» Articles » PMID: 29423439

Photocarrier Generation from Interlayer Charge-transfer Transitions in WS-graphene Heterostructures

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2018 Feb 10
PMID 29423439
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

Efficient interfacial carrier generation in van der Waals heterostructures is critical for their electronic and optoelectronic applications. We demonstrate broadband photocarrier generation in WS-graphene heterostructures by imaging interlayer coupling-dependent charge generation using ultrafast transient absorption microscopy. Interlayer charge-transfer (CT) transitions and hot carrier injection from graphene allow carrier generation by excitation as low as 0.8 eV below the WS bandgap. The experimentally determined interlayer CT transition energies are consistent with those predicted from the first-principles band structure calculation. CT interactions also lead to additional carrier generation in the visible spectral range in the heterostructures compared to that in the single-layer WS alone. The lifetime of the charge-separated states is measured to be ~1 ps. These results suggest that interlayer interactions make graphene-two-dimensional semiconductor heterostructures very attractive for photovoltaic and photodetector applications because of the combined benefits of high carrier mobility and enhanced broadband photocarrier generation.

Citing Articles

Ultrafast Hot Carrier Cooling Enabled van der Waals Photodetectors at Telecom Wavelengths.

Zeng Z, Wang Y, Michel P, Strauss F, Wang X, Braun K Nano Lett. 2025; 25(9):3497-3504.

PMID: 39991776 PMC: 11887449. DOI: 10.1021/acs.nanolett.4c05953.


Temperature Dependence of Optical Properties of MoS and WS Heterostructures Assessed by Spectroscopic Ellipsometry.

Nguyen H, Le V, Nguyen T, Bui X, Nguyen T, Nguyen N Nanomaterials (Basel). 2025; 15(1.

PMID: 39791834 PMC: 11723339. DOI: 10.3390/nano15010076.


Ultrafast dynamics and ablation mechanism in femtosecond laser irradiated Au/Ti bilayer systems.

Lian Y, Jiang L, Sun J, Tao W, Chen Z, Lin G Nanophotonics. 2024; 12(24):4461-4473.

PMID: 39634706 PMC: 11501701. DOI: 10.1515/nanoph-2023-0497.


Long-lived isospin excitations in magic-angle twisted bilayer graphene.

Xie T, Xu S, Dong Z, Cui Z, Ou Y, Erdi M Nature. 2024; 633(8028):77-82.

PMID: 39198652 DOI: 10.1038/s41586-024-07880-5.


Large-Scale Direct Growth of Monolayer MoS on Patterned Graphene for van der Waals Ultrafast Photoactive Circuits.

Sharma R, Nameirakpam H, Belinchon D, Sharma P, Noumbe U, Belotcerkovtceva D ACS Appl Mater Interfaces. 2024; 16(29):38711-38722.

PMID: 38995218 PMC: 11284756. DOI: 10.1021/acsami.4c07028.


References
1.
Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J . Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano Lett. 2014; 14(6):3185-90. DOI: 10.1021/nl500515q. View

2.
Sie E, Steinhoff A, Gies C, Lui C, Ma Q, Rosner M . Observation of Exciton Redshift-Blueshift Crossover in Monolayer WS. Nano Lett. 2017; 17(7):4210-4216. DOI: 10.1021/acs.nanolett.7b01034. View

3.
Hong X, Kim J, Shi S, Zhang Y, Jin C, Sun Y . Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures. Nat Nanotechnol. 2014; 9(9):682-6. DOI: 10.1038/nnano.2014.167. View

4.
Blochl . Projector augmented-wave method. Phys Rev B Condens Matter. 1994; 50(24):17953-17979. DOI: 10.1103/physrevb.50.17953. View

5.
Heo H, Sung J, Cha S, Jang B, Kim J, Jin G . Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks. Nat Commun. 2015; 6:7372. PMC: 4557351. DOI: 10.1038/ncomms8372. View