» Articles » PMID: 29416954

A 250 Plastome Phylogeny of the Grass Family (Poaceae): Topological Support Under Different Data Partitions

Overview
Journal PeerJ
Date 2018 Feb 9
PMID 29416954
Citations 60
Authors
Affiliations
Soon will be listed here.
Abstract

The systematics of grasses has advanced through applications of plastome phylogenomics, although studies have been largely limited to subfamilies or other subgroups of Poaceae. Here we present a plastome phylogenomic analysis of 250 complete plastomes (179 genera) sampled from 44 of the 52 tribes of Poaceae. Plastome sequences were determined from high throughput sequencing libraries and the assemblies represent over 28.7 Mbases of sequence data. Phylogenetic signal was characterized in 14 partitions, including (1) complete plastomes; (2) protein coding regions; (3) noncoding regions; and (4) three loci commonly used in single and multi-gene studies of grasses. Each of the four main partitions was further refined, alternatively including or excluding positively selected codons and also the gaps introduced by the alignment. All 76 protein coding plastome loci were found to be predominantly under purifying selection, but specific codons were found to be under positive selection in 65 loci. The loci that have been widely used in multi-gene phylogenetic studies had among the highest proportions of positively selected codons, suggesting caution in the interpretation of these earlier results. Plastome phylogenomic analyses confirmed the backbone topology for Poaceae with maximum bootstrap support (BP). Among the 14 analyses, 82 clades out of 309 resolved were maximally supported in all trees. Analyses of newly sequenced plastomes were in agreement with current classifications. Five of seven partitions in which alignment gaps were removed retrieved Panicoideae as sister to the remaining PACMAD subfamilies. Alternative topologies were recovered in trees from partitions that included alignment gaps. This suggests that ambiguities in aligning these uncertain regions might introduce a false signal. Resolution of these and other critical branch points in the phylogeny of Poaceae will help to better understand the selective forces that drove the radiation of the BOP and PACMAD clades comprising more than 99.9% of grass diversity.

Citing Articles

A nuclear phylogenomic tree of grasses (Poaceae) recovers current classification despite gene tree incongruence.

New Phytol. 2024; 245(2):818-834.

PMID: 39568153 PMC: 11655423. DOI: 10.1111/nph.20263.


Comparative RNA profiling identifies stage-specific phasiRNAs and coexpressed Argonaute genes in Bambusoideae and Pooideae species.

Belanger S, Zhan J, Yu Y, Meyers B Plant Cell. 2024; 37(1).

PMID: 39556763 PMC: 11663589. DOI: 10.1093/plcell/koae308.


Unprecedented variation pattern of plastid genomes and the potential role in adaptive evolution in Poales.

Wu H, Li D, Ma P BMC Biol. 2024; 22(1):97.

PMID: 38679718 PMC: 11057118. DOI: 10.1186/s12915-024-01890-5.


Molecular Characterization and Phylogenetic Analysis of Centipedegrass [ (Munro) Hack.] Based on the Complete Chloroplast Genome Sequence.

Wang H, Zhang Y, Zhang L, Wang J, Guo H, Zong J Curr Issues Mol Biol. 2024; 46(2):1635-1650.

PMID: 38392224 PMC: 10888139. DOI: 10.3390/cimb46020106.


The complete plastomes of thirteen Libanotis (Apiaceae, Apioideae) plants: comparative and phylogenetic analyses provide insights into the plastome evolution and taxonomy of Libanotis.

Liu L, Liu C, Cai J, Deng J, He X, Zhou S BMC Plant Biol. 2024; 24(1):106.

PMID: 38342898 PMC: 10860227. DOI: 10.1186/s12870-024-04784-4.


References
1.
Saarela J, Bull R, Paradis M, Ebata S, Peterson P, Soreng R . Molecular phylogenetics of cool-season grasses in the subtribes Agrostidinae, Anthoxanthinae, Aveninae, Brizinae, Calothecinae, Koeleriinae and Phalaridinae (Poaceae, Pooideae, Poeae, Poeae chloroplast group 1). PhytoKeys. 2017; (87):1-139. PMC: 5672130. DOI: 10.3897/phytokeys.87.12774. View

2.
Washburn J, Schnable J, Davidse G, Pires J . Phylogeny and photosynthesis of the grass tribe Paniceae. Am J Bot. 2015; 102(9):1493-505. DOI: 10.3732/ajb.1500222. View

3.
Mason-Gamer R . The {beta}-amylase genes of grasses and a phylogenetic analysis of the Triticeae (Poaceae). Am J Bot. 2011; 92(6):1045-58. DOI: 10.3732/ajb.92.6.1045. View

4.
Sanchez-Ken J, Clark L . Phylogeny and a new tribal classification of the Panicoideae s.l. (Poaceae) based on plastid and nuclear sequence data and structural data. Am J Bot. 2011; 97(10):1732-48. DOI: 10.3732/ajb.1000024. View

5.
Kosakovsky Pond S, Frost S . Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics. 2005; 21(10):2531-3. DOI: 10.1093/bioinformatics/bti320. View