» Articles » PMID: 29404322

Application of a ω-3 Desaturase with an Arachidonic Acid Preference to Eicosapentaenoic Acid Production in

Overview
Date 2018 Feb 7
PMID 29404322
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

In the industrial oleaginous fungus a, the arachidonic acid (AA; C20:4; ω-6) fraction can reach 50% of the total fatty acids (TFAs) . However, the eicosapentaenoic acid (EPA; C20:5; ω-3) fraction is less than 3% when this fungus is cultivated at a low temperature (12°C). Omega-3 fatty acid desaturase is a key enzyme in ω-3 long-chain polyunsaturated fatty acids biosynthesis pathways. To enhance EPA production, we transformed the ω-3 fatty acid desaturase (PaD17), which exhibits strong Δ-17 desaturase activity, into , thus increasing the AA to EPA conversion rate to 49.8%. This PaD17-harboring reconstruction strain produced 617 mg L of EPA at room temperature in broth medium, this yield was increased to 1.73 g L after culture medium optimization (i.e., about threefold higher than that under original culture conditions), with concomitant respective increases in dry cell weight and TFA content to 16.55 and 6.46 g L. These findings suggest a new platform for the future industrial production of EPA.

Citing Articles

Oleaginous fungi: a promising source of biofuels and nutraceuticals with enhanced lipid production strategies.

Hassane A, Eldiehy K, Saha D, Mohamed H, Mosa M, Abouelela M Arch Microbiol. 2024; 206(7):338.

PMID: 38955856 DOI: 10.1007/s00203-024-04054-9.


Potential of Mortierellaceae for polyunsaturated fatty acids production: mini review.

Oliveira R, Robl D, Ienczak J Biotechnol Lett. 2023; 45(7):741-759.

PMID: 37148344 DOI: 10.1007/s10529-023-03381-z.


Simultaneous overexpression of ∆6-, ∆12- and ∆9-desaturases enhanced the production of γ-linolenic acid in WJ11.

Wang X, Yang J, Mohamed H, Shah A, Li S, Pang S Front Microbiol. 2023; 13:1078157.

PMID: 36590442 PMC: 9797528. DOI: 10.3389/fmicb.2022.1078157.


Application of high EPA-producing in laying hen feed for egg DHA accumulation.

Tang X, Chen H, Ge C, Dong S, Si S, Liu J RSC Adv. 2022; 8(68):39005-39012.

PMID: 35558321 PMC: 9090661. DOI: 10.1039/c8ra06525j.


Microbes: A Hidden Treasure of Polyunsaturated Fatty Acids.

Shah A, Yang W, Mohamed H, Zhang Y, Song Y Front Nutr. 2022; 9:827837.

PMID: 35369055 PMC: 8968027. DOI: 10.3389/fnut.2022.827837.


References
1.
Hao G, Chen H, Wang L, Gu Z, Song Y, Zhang H . Role of malic enzyme during fatty acid synthesis in the oleaginous fungus Mortierella alpina. Appl Environ Microbiol. 2014; 80(9):2672-8. PMC: 3993310. DOI: 10.1128/AEM.00140-14. View

2.
Ledesma-Amaro R, Nicaud J . Metabolic Engineering for Expanding the Substrate Range of Yarrowia lipolytica. Trends Biotechnol. 2016; 34(10):798-809. DOI: 10.1016/j.tibtech.2016.04.010. View

3.
Swanson D, Block R, Mousa S . Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv Nutr. 2012; 3(1):1-7. PMC: 3262608. DOI: 10.3945/an.111.000893. View

4.
Pereira S, Huang Y, Bobik E, Kinney A, Stecca K, Packer J . A novel omega3-fatty acid desaturase involved in the biosynthesis of eicosapentaenoic acid. Biochem J. 2003; 378(Pt 2):665-71. PMC: 1223990. DOI: 10.1042/BJ20031319. View

5.
Hamilton M, Haslam R, Napier J, Sayanova O . Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids. Metab Eng. 2013; 22:3-9. PMC: 3985434. DOI: 10.1016/j.ymben.2013.12.003. View