» Articles » PMID: 29389906

Indole-3-Acetic Acid Biosynthesis Pathways in the Plant-Beneficial Bacterium Arthrobacter Pascens ZZ21

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2018 Feb 2
PMID 29389906
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

ZZ21 is a plant-beneficial, fluoranthene-degrading bacterial strain found in the rhizosphere. The production of the phytohormone indole-3-aectic acid (IAA) by ZZ21 is thought to contribute to its ability to promote plant growth and remediate fluoranthene-contaminated soil. Using genome-wide analysis combined with metabolomic and high-performance liquid chromatography-mass spectrometry (HPLC-MS) analyses, we characterized the potential IAA biosynthesis pathways in ZZ21. IAA production increased 4.5-fold in the presence of 200 mg·L tryptophan in the culture medium. The transcript levels of and , genes which were predicted to encode aldehyde dehydrogenases, were significantly upregulated in response to exogenous tryptophan. Additionally, metabolomic analysis identified the intermediates indole-3-acetamide (IAM), indole-3-pyruvic acid (IPyA), and the enzymatic reduction product of the latter, indole-3-lactic acid (ILA), among the metabolites of ZZ21, and subsequently also IAM, ILA, and indole-3-ethanol (TOL), which is the enzymatic reduction product of indole-3-acetaldehyde, by HPLC-MS. These results suggest that the tryptophan-dependent IAM and IPyA pathways function in ZZ21.

Citing Articles

Influence of Tryptophan Metabolism on the Protective Effect of Weissella paramesenteroides WpK4 in a Murine Model of Chemotherapy-Induced Intestinal Mucositis.

Guimaraes G, Costa K, da Silva Santana Moura C, Moreira S, Marchiori J, de Menezes Santos A Probiotics Antimicrob Proteins. 2024; .

PMID: 39602009 DOI: 10.1007/s12602-024-10413-1.


Bacillus xiamenensis Inhibits the Growth of Moraxella osloensis by Producing Indole-3-Carboxaldehyde.

Watanabe M, Sekino Y, Kuramochi K, Furuyama Y Microbiologyopen. 2024; 13(6):e70009.

PMID: 39535470 PMC: 11558204. DOI: 10.1002/mbo3.70009.


IAA Synthesis Pathway of WL35 and Its Regulatory Gene Expression Levels in Potato ( L.).

Li X, Tao H, Wang S, Zhang D, Xiong X, Cai Y Microorganisms. 2024; 12(8).

PMID: 39203372 PMC: 11356661. DOI: 10.3390/microorganisms12081530.


The Microbiome of Fertilization-Stage Maize Silks (Style) Encodes Genes and Expresses Traits That Potentially Promote Survival in Pollen/Style Niches and Host Reproduction.

Thompson M, Raizada M Microorganisms. 2024; 12(7).

PMID: 39065240 PMC: 11278993. DOI: 10.3390/microorganisms12071473.


Salt-tolerant plant growth-promoting bacteria as a versatile tool for combating salt stress in crop plants.

Xie X, Gan L, Wang C, He T Arch Microbiol. 2024; 206(8):341.

PMID: 38967784 DOI: 10.1007/s00203-024-04071-8.


References
1.
Forni C, Riov J, Grilli Caiola M, Tel-Or E . Indole-3-acetic acid (IAA) production by Arthrobacter species isolated from Azolla. J Gen Microbiol. 1992; 138(2):377-81. DOI: 10.1099/00221287-138-2-377. View

2.
Nelson K, Weinel C, Paulsen I, Dodson R, HILBERT H, Martins Dos Santos V . Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol. 2003; 4(12):799-808. DOI: 10.1046/j.1462-2920.2002.00366.x. View

3.
Patten C, Glick B . Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol. 2002; 68(8):3795-801. PMC: 124051. DOI: 10.1128/AEM.68.8.3795-3801.2002. View

4.
Koga J, Syono K, Ichikawa T, Adachi T . Involvement of L-tryptophan aminotransferase in indole-3-acetic acid biosynthesis in Enterobacter cloacae. Biochim Biophys Acta. 1994; 1209(2):241-7. DOI: 10.1016/0167-4838(94)90191-0. View

5.
Patten C, Blakney A, Coulson T . Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria. Crit Rev Microbiol. 2012; 39(4):395-415. DOI: 10.3109/1040841X.2012.716819. View