» Articles » PMID: 29379061

Using DNA Origami Nanorulers As Traceable Distance Measurement Standards and Nanoscopic Benchmark Structures

Overview
Journal Sci Rep
Specialty Science
Date 2018 Jan 31
PMID 29379061
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

In recent years, DNA origami nanorulers for superresolution (SR) fluorescence microscopy have been developed from fundamental proof-of-principle experiments to commercially available test structures. The self-assembled nanostructures allow placing a defined number of fluorescent dye molecules in defined geometries in the nanometer range. Besides the unprecedented control over matter on the nanoscale, robust DNA origami nanorulers are reproducibly obtained in high yields. The distances between their fluorescent marks can be easily analysed yielding intermark distance histograms from many identical structures. Thus, DNA origami nanorulers have become excellent reference and training structures for superresolution microscopy. In this work, we go one step further and develop a calibration process for the measured distances between the fluorescent marks on DNA origami nanorulers. The superresolution technique DNA-PAINT is used to achieve nanometrological traceability of nanoruler distances following the guide to the expression of uncertainty in measurement (GUM). We further show two examples how these nanorulers are used to evaluate the performance of TIRF microscopes that are capable of single-molecule localization microscopy (SMLM).

Citing Articles

Fully addressable designer superstructures assembled from one single modular DNA origami.

Weck J, Heuer-Jungemann A Nat Commun. 2025; 16(1):1556.

PMID: 39934172 PMC: 11814417. DOI: 10.1038/s41467-025-56846-2.


DNA Hybridization Kinetics Observed at the Single-Molecule Level Using Graphene Near-Field Effects.

Soares M, Freitas J, Queiros T, Purwidyantri A, Alpuim P, Nieder J J Phys Chem A. 2024; 128(49):10689-10696.

PMID: 39622497 PMC: 11647878. DOI: 10.1021/acs.jpca.4c05740.


One-step nanoscale expansion microscopy reveals individual protein shapes.

Shaib A, Chouaib A, Chowdhury R, Altendorf J, Mihaylov D, Zhang C Nat Biotechnol. 2024; .

PMID: 39385007 PMC: 7616833. DOI: 10.1038/s41587-024-02431-9.


Traceable localization enables accurate integration of quantum emitters and photonic structures with high yield.

Copeland C, Pintar A, Dixson R, Chanana A, Srinivasan K, Westly D Opt Quantum. 2024; 2(2):72-84.

PMID: 38741706 PMC: 11089896. DOI: 10.1364/opticaq.502464.


Lab-on-a-DNA origami: nanoengineered single-molecule platforms.

Kogikoski Jr S, Ameixa J, Mostafa A, Bald I Chem Commun (Camb). 2023; 59(32):4726-4741.

PMID: 37000514 PMC: 10111202. DOI: 10.1039/d3cc00718a.


References
1.
Rothemund P . Folding DNA to create nanoscale shapes and patterns. Nature. 2006; 440(7082):297-302. DOI: 10.1038/nature04586. View

2.
Jusuk I, Vietz C, Raab M, Dammeyer T, Tinnefeld P . Super-Resolution Imaging Conditions for enhanced Yellow Fluorescent Protein (eYFP) Demonstrated on DNA Origami Nanorulers. Sci Rep. 2015; 5:14075. PMC: 4571581. DOI: 10.1038/srep14075. View

3.
Antolovic I, Burri S, Bruschini C, Hoebe R, Charbon E . SPAD imagers for super resolution localization microscopy enable analysis of fast fluorophore blinking. Sci Rep. 2017; 7:44108. PMC: 5347095. DOI: 10.1038/srep44108. View

4.
Molle J, Raab M, Holzmeister S, Schmitt-Monreal D, Grohmann D, He Z . Superresolution microscopy with transient binding. Curr Opin Biotechnol. 2016; 39:8-16. DOI: 10.1016/j.copbio.2015.12.009. View

5.
Schmied J, Raab M, Forthmann C, Pibiri E, Wunsch B, Dammeyer T . DNA origami-based standards for quantitative fluorescence microscopy. Nat Protoc. 2014; 9(6):1367-91. DOI: 10.1038/nprot.2014.079. View