» Articles » PMID: 29378510

Transcriptomic Profiling of Burkholderia Phymatum STM815, Cupriavidus Taiwanensis LMG19424 and Rhizobium Mesoamericanum STM3625 in Response to Mimosa Pudica Root Exudates Illuminates the Molecular Basis of Their Nodulation Competitiveness And...

Overview
Journal BMC Genomics
Publisher Biomed Central
Specialty Genetics
Date 2018 Jan 31
PMID 29378510
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Rhizobial symbionts belong to the classes Alphaproteobacteria and Betaproteobacteria (called "alpha" and "beta"-rhizobia). Most knowledge on the genetic basis of symbiosis is based on model strains belonging to alpha-rhizobia. Mimosa pudica is a legume that offers an excellent opportunity to study the adaptation toward symbiotic nitrogen fixation in beta-rhizobia compared to alpha-rhizobia. In a previous study (Melkonian et al., Environ Microbiol 16:2099-111, 2014) we described the symbiotic competitiveness of M. pudica symbionts belonging to Burkholderia, Cupriavidus and Rhizobium species.

Results: In this article we present a comparative analysis of the transcriptomes (by RNAseq) of B. phymatum STM815 (BP), C. taiwanensis LMG19424 (CT) and R. mesoamericanum STM3625 (RM) in conditions mimicking the early steps of symbiosis (i.e. perception of root exudates). BP exhibited the strongest transcriptome shift both quantitatively and qualitatively, which mirrors its high competitiveness in the early steps of symbiosis and its ancient evolutionary history as a symbiont, while CT had a minimal response which correlates with its status as a younger symbiont (probably via acquisition of symbiotic genes from a Burkholderia ancestor) and RM had a typical response of Alphaproteobacterial rhizospheric bacteria. Interestingly, the upregulation of nodulation genes was the only common response among the three strains; the exception was an up-regulated gene encoding a putative fatty acid hydroxylase, which appears to be a novel symbiotic gene specific to Mimosa symbionts.

Conclusion: The transcriptional response to root exudates was correlated to each strain nodulation competitiveness, with Burkholderia phymatum appearing as the best specialised symbiont of Mimosa pudica.

Citing Articles

A rhamnose-rich O-antigen of MP20 is required for symbiosis with .

Welmillage S, James E, Tak N, Shedge S, Huang L, Muszynski A J Bacteriol. 2025; 207(2):e0042224.

PMID: 39846764 PMC: 11841133. DOI: 10.1128/jb.00422-24.


Tn-seq profiling reveals that NodS of the beta-rhizobium Paraburkholderia phymatum is detrimental for nodulating soybean.

Belles-Sancho P, Golaz D, Paszti S, Vitale A, Liu Y, Bailly A Commun Biol. 2024; 7(1):1706.

PMID: 39730742 PMC: 11681206. DOI: 10.1038/s42003-024-07385-x.


The peanut root exudate increases the transport and metabolism of nutrients and enhances the plant growth-promoting effects of burkholderia pyrrocinia strain P10.

Han L, Zhang H, Bai X, Jiang B BMC Microbiol. 2023; 23(1):85.

PMID: 36991332 PMC: 10061817. DOI: 10.1186/s12866-023-02818-9.


Discovery of a novel filamentous prophage in the genome of the microsymbiont STM 6018.

Klonowska A, Ardley J, Moulin L, Zandberg J, Patrel D, Gollagher M Front Microbiol. 2023; 14:1082107.

PMID: 36925474 PMC: 10011098. DOI: 10.3389/fmicb.2023.1082107.


A novel function of the key nitrogen-fixation activator NifA in beta-rhizobia: Repression of bacterial auxin synthesis during symbiosis.

Belles-Sancho P, Liu Y, Heiniger B, von Salis E, Eberl L, Ahrens C Front Plant Sci. 2022; 13:991548.

PMID: 36247538 PMC: 9554594. DOI: 10.3389/fpls.2022.991548.


References
1.
Chen W, de Faria S, Chou J, James E, Elliott G, Sprent J . Burkholderia sabiae sp. nov., isolated from root nodules of Mimosa caesalpiniifolia. Int J Syst Evol Microbiol. 2008; 58(Pt 9):2174-9. DOI: 10.1099/ijs.0.65816-0. View

2.
Liu X, Wei S, Wang F, James E, Guo X, Zagar C . Burkholderia and Cupriavidus spp. are the preferred symbionts of Mimosa spp. in southern China. FEMS Microbiol Ecol. 2012; 80(2):417-26. DOI: 10.1111/j.1574-6941.2012.01310.x. View

3.
Angus A, Agapakis C, Fong S, Yerrapragada S, Estrada-de Los Santos P, Yang P . Plant-associated symbiotic Burkholderia species lack hallmark strategies required in mammalian pathogenesis. PLoS One. 2014; 9(1):e83779. PMC: 3885511. DOI: 10.1371/journal.pone.0083779. View

4.
Fernandez-Lopez R, Garcillan-Barcia M, Revilla C, Lazaro M, Vielva L, de la Cruz F . Dynamics of the IncW genetic backbone imply general trends in conjugative plasmid evolution. FEMS Microbiol Rev. 2006; 30(6):942-66. DOI: 10.1111/j.1574-6976.2006.00042.x. View

5.
Klonowska A, Chaintreuil C, Tisseyre P, Miche L, Melkonian R, Ducousso M . Biodiversity of Mimosa pudica rhizobial symbionts (Cupriavidus taiwanensis, Rhizobium mesoamericanum) in New Caledonia and their adaptation to heavy metal-rich soils. FEMS Microbiol Ecol. 2012; 81(3):618-35. DOI: 10.1111/j.1574-6941.2012.01393.x. View