» Articles » PMID: 29374156

Caging Tin Oxide in Three-dimensional Graphene Networks for Superior Volumetric Lithium Storage

Overview
Journal Nat Commun
Specialty Biology
Date 2018 Jan 28
PMID 29374156
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Tin and its compounds hold promise for the development of high-capacity anode materials that could replace graphitic carbon used in current lithium-ion batteries. However, the introduced porosity in current electrode designs to buffer the volume changes of active materials during cycling does not afford high volumetric performance. Here, we show a strategy leveraging a sulfur sacrificial agent for controlled utility of void space in a tin oxide/graphene composite anode. In a typical synthesis using the capillary drying of graphene hydrogels, sulfur is employed with hard tin oxide nanoparticles inside the contraction hydrogels. The resultant graphene-caged tin oxide delivers an ultrahigh volumetric capacity of 2123 mAh cm together with good cycling stability. Our results suggest not only a conversion-type composite anode that allows for good electrochemical characteristics, but also a general synthetic means to engineering the packing density of graphene nanosheets for high energy storage capabilities in small volumes.

Citing Articles

Layer-by-layer assembled 2D nanocomposites for extreme polarization optics.

Yang J, Cheng Q Natl Sci Rev. 2024; 11(11):nwae353.

PMID: 39474598 PMC: 11519024. DOI: 10.1093/nsr/nwae353.


Direct Ink Writing 3D Printing for High-Performance Electrochemical Energy Storage Devices: A Minireview.

Zeng L, Ling S, Du D, He H, Li X, Zhang C Adv Sci (Weinh). 2023; 10(32):e2303716.

PMID: 37740446 PMC: 10646286. DOI: 10.1002/advs.202303716.


Tin/Tin Oxide Nanostructures: Formation, Application, and Atomic and Electronic Structure Peculiarities.

Liu P, Sivakov V Nanomaterials (Basel). 2023; 13(17).

PMID: 37686899 PMC: 10490065. DOI: 10.3390/nano13172391.


Nano-Confined Tin Oxide in Carbon Nanotube Electrodes via Electrostatic Spray Deposition for Lithium-Ion Batteries.

Henriques A, Baboukani A, Jafarizadeh B, Chowdhury A, Wang C Materials (Basel). 2022; 15(24).

PMID: 36556892 PMC: 9786169. DOI: 10.3390/ma15249086.


Graphene-Induced Performance Enhancement of Batteries, Touch Screens, Transparent Memory, and Integrated Circuits: A Critical Review on a Decade of Developments.

Sengupta J, Hussain C Nanomaterials (Basel). 2022; 12(18).

PMID: 36144934 PMC: 9503183. DOI: 10.3390/nano12183146.


References
1.
Tian R, Zhang Y, Chen Z, Duan H, Xu B, Guo Y . The effect of annealing on a 3D SnO2/graphene foam as an advanced lithium-ion battery anode. Sci Rep. 2016; 6:19195. PMC: 4709726. DOI: 10.1038/srep19195. View

2.
Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R . A major constituent of brown algae for use in high-capacity Li-ion batteries. Science. 2011; 334(6052):75-9. DOI: 10.1126/science.1209150. View

3.
Zhao H, Yang Q, Yuca N, Ling M, Higa K, Battaglia V . A Convenient and Versatile Method To Control the Electrode Microstructure toward High-Energy Lithium-Ion Batteries. Nano Lett. 2016; 16(7):4686-90. DOI: 10.1021/acs.nanolett.6b02156. View

4.
Zhang L, Wu H, Madhavi S, Hng H, Lou X . Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties. J Am Chem Soc. 2012; 134(42):17388-91. DOI: 10.1021/ja307475c. View

5.
Schuster J, He G, Mandlmeier B, Yim T, Lee K, Bein T . Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries. Angew Chem Int Ed Engl. 2012; 51(15):3591-5. DOI: 10.1002/anie.201107817. View