Lipsa S, Dash R, Cengiz K, Ivkovic N, Akhunzada A
Digit Health. 2025; 11:20552076251321540.
PMID: 40078448
PMC: 11898240.
DOI: 10.1177/20552076251321540.
Sora-Cardenas J, Fong-Amaris W, Salazar-Centeno C, Castaneda A, Martinez-Bernal O, Suarez D
Sensors (Basel). 2025; 25(2).
PMID: 39860759
PMC: 11769203.
DOI: 10.3390/s25020390.
Contreras-Ramirez M, Sora-Cardenas J, Colorado-Salamanca C, Ovalle-Bracho C, Suarez D
Sensors (Basel). 2025; 24(24.
PMID: 39771915
PMC: 11679136.
DOI: 10.3390/s24248180.
Boit S, Patil R
Diagnostics (Basel). 2024; 14(23).
PMID: 39682645
PMC: 11639908.
DOI: 10.3390/diagnostics14232738.
Farschtschi S, Lengl M, Rohrl S, Klenk C, Hayden O, Diepold K
Animals (Basel). 2024; 14(21).
PMID: 39518879
PMC: 11544890.
DOI: 10.3390/ani14213156.
CAM: a novel aid system to analyse the coloration quality of thick blood smears using image processing and machine learning techniques.
Fong Amaris W, Suarez D, Cortes-Cortes L, Martinez C
Malar J. 2024; 23(1):299.
PMID: 39375756
PMC: 11459806.
DOI: 10.1186/s12936-024-05025-7.
Evaluation of a Deep Learning Based Approach to Computational Label Free Cell Viability Quantification.
Reno A, Tang J, Sudbeck M, Custodio P, Baldus B, McLaughlin E
bioRxiv. 2024; .
PMID: 39257757
PMC: 11383692.
DOI: 10.1101/2024.08.29.610252.
Application of Machine Learning in a Rodent Malaria Model for Rapid, Accurate, and Consistent Parasite Counts.
Yanik S, Yu H, Chaiyawong N, Adewale-Fasoro O, Dinis L, Narayanasamy R
Am J Trop Med Hyg. 2024; 111(5):967-976.
PMID: 39255803
PMC: 11542515.
DOI: 10.4269/ajtmh.24-0135.
Antiprotozoal peptide prediction using machine learning with effective feature selection techniques.
Periwal N, Arora P, Thakur A, Agrawal L, Goyal Y, Rathore A
Heliyon. 2024; 10(16):e36163.
PMID: 39247292
PMC: 11380031.
DOI: 10.1016/j.heliyon.2024.e36163.
Biophysical profiling of red blood cells from thin-film blood smears using deep learning.
Lamoureux E, Cheng Y, Islamzada E, Matthews K, Duffy S, Ma H
Heliyon. 2024; 10(15):e35276.
PMID: 39170127
PMC: 11336426.
DOI: 10.1016/j.heliyon.2024.e35276.
Diagnostic accuracy of an automated microscope solution (miLab™) in detecting malaria parasites in symptomatic patients at point-of-care in Sudan: a case-control study.
Abdel Hamid M, Mohamed A, Mohammed F, Elaagip A, Mustafa S, Elfaki T
Malar J. 2024; 23(1):200.
PMID: 38943203
PMC: 11212432.
DOI: 10.1186/s12936-024-05029-3.
Development of a low-cost robotized 3D-prototype for automated optical microscopy diagnosis: An open-source system.
de Oliveira A, Rubio Maturana C, Serrat F, Carvalho B, Sulleiro E, Prats C
PLoS One. 2024; 19(6):e0304085.
PMID: 38905190
PMC: 11192333.
DOI: 10.1371/journal.pone.0304085.
Transforming Rapid Diagnostic Tests for Precision Public Health: Open Guidelines for Manufacturers and Users.
Lubell-Doughtie P, Bhatt S, Wong R, Shankar A
JMIR Biomed Eng. 2024; 7(2):e26800.
PMID: 38875688
PMC: 11041428.
DOI: 10.2196/26800.
Microscopic parasite malaria classification using best feature selection based on generalized normal distribution optimization.
Amin J, Anjum M, Ahmad A, Sharif M, Kadry S, Kim J
PeerJ Comput Sci. 2024; 10:e1744.
PMID: 38196949
PMC: 10773915.
DOI: 10.7717/peerj-cs.1744.
Automatic patient-level recognition of four species on thin blood smear by a real-time detection transformer (RT-DETR) object detection algorithm: a proof-of-concept and evaluation.
Guemas E, Routier B, Ghelfenstein-Ferreira T, Cordier C, Hartuis S, Marion B
Microbiol Spectr. 2024; 12(2):e0144023.
PMID: 38171008
PMC: 10846087.
DOI: 10.1128/spectrum.01440-23.
Prediction of malaria positivity using patients' demographic and environmental features and clinical symptoms to complement parasitological confirmation before treatment.
Ojurongbe T, Afolabi H, Bashiru K, Sule W, Akinde S, Ojurongbe O
Trop Dis Travel Med Vaccines. 2023; 9(1):24.
PMID: 38098124
PMC: 10722830.
DOI: 10.1186/s40794-023-00208-7.
: a novel automated system for malaria diagnosis by using artificial intelligence tools and a universal low-cost robotized microscope.
Rubio Maturana C, de Oliveira A, Nadal S, Serrat F, Sulleiro E, Ruiz E
Front Microbiol. 2023; 14:1240936.
PMID: 38075929
PMC: 10704928.
DOI: 10.3389/fmicb.2023.1240936.
Efficient Malaria Parasite Detection From Diverse Images of Thick Blood Smears for Cross-Regional Model Accuracy.
Zhong Y, Dan Y, Cai Y, Lin J, Huang X, Mahmoud O
IEEE Open J Eng Med Biol. 2023; 4:226-233.
PMID: 38059069
PMC: 10697288.
DOI: 10.1109/OJEMB.2023.3328435.
Application of Deep Learning in Clinical Settings for Detecting and Classifying Malaria Parasites in Thin Blood Smears.
Wang G, Luo G, Lian H, Chen L, Wu W, Liu H
Open Forum Infect Dis. 2023; 10(11):ofad469.
PMID: 37937045
PMC: 10627339.
DOI: 10.1093/ofid/ofad469.
AIDMAN: An AI-based object detection system for malaria diagnosis from smartphone thin-blood-smear images.
Liu R, Liu T, Dan T, Yang S, Li Y, Luo B
Patterns (N Y). 2023; 4(9):100806.
PMID: 37720337
PMC: 10499858.
DOI: 10.1016/j.patter.2023.100806.