» Articles » PMID: 29337890

Subcellular Reactive Oxygen Species (ROS) in Cardiovascular Pathophysiology

Overview
Date 2018 Jan 17
PMID 29337890
Citations 48
Authors
Affiliations
Soon will be listed here.
Abstract

There exist two opposing perspectives regarding reactive oxygen species (ROS) and their roles in angiogenesis and cardiovascular system, one that favors harmful and causal effects of ROS, while the other supports beneficial effects. Recent studies have shown that interaction between ROS in different sub-cellular compartments plays a crucial role in determining the outcomes (beneficial vs. deleterious) of ROS exposures on the vascular system. Oxidant radicals in one cellular organelle can affect the ROS content and function in other sub-cellular compartments in endothelial cells (ECs). In this review, we will focus on a critical fact that the effects or the final phenotypic outcome of ROS exposure to EC are tissue- or organ-specific, and depend on the spatial (subcellular localization) and temporal (duration of ROS exposure) modulation of ROS levels.

Citing Articles

Modulating the Biliverdin Reductase (BVR)/ERK1/2 Axis to Attenuate Oxidative Stress in Rat Arterial Rings.

Sharma K, Sterle M, Mozina H Iran J Pharm Res. 2025; 23(1):e156828.

PMID: 40066119 PMC: 11892756. DOI: 10.5812/ijpr-156828.


Mitochondrial Peroxiredoxins and Monoamine Oxidase-A: Dynamic Regulators of ROS Signaling in Cardioprotection.

Ferko M, Alanova P, Janko D, Opletalova B, Andelova N Physiol Res. 2025; 73(6):887-900.

PMID: 39903882 PMC: 11835206.


Hypoxia-Induced Mitochondrial ROS and Function in Pulmonary Arterial Endothelial Cells.

Wang H, Song T, Reyes-Garcia J, Wang Y Cells. 2024; 13(21.

PMID: 39513914 PMC: 11545379. DOI: 10.3390/cells13211807.


Childhood Cardiovascular Health, Obesity, and Some Related Disorders: Insights into Chronic Inflammation and Oxidative Stress.

Hertis Petek T, Marcun Varda N Int J Mol Sci. 2024; 25(17).

PMID: 39273654 PMC: 11396019. DOI: 10.3390/ijms25179706.


The relationship of redox signaling with the risk for atherosclerosis.

Lei S, Liu C, Zheng T, Fu W, Huang M Front Pharmacol. 2024; 15:1430293.

PMID: 39148537 PMC: 11324460. DOI: 10.3389/fphar.2024.1430293.


References
1.
Natarajan R, Salloum F, Fisher B, Kukreja R, Fowler 3rd A . Hypoxia inducible factor-1 activation by prolyl 4-hydroxylase-2 gene silencing attenuates myocardial ischemia reperfusion injury. Circ Res. 2005; 98(1):133-40. DOI: 10.1161/01.RES.0000197816.63513.27. View

2.
Dikalova A, Bikineyeva A, Budzyn K, Nazarewicz R, McCann L, Lewis W . Therapeutic targeting of mitochondrial superoxide in hypertension. Circ Res. 2010; 107(1):106-16. PMC: 2901409. DOI: 10.1161/CIRCRESAHA.109.214601. View

3.
Heitzer T, Schlinzig T, Krohn K, Meinertz T, Munzel T . Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation. 2001; 104(22):2673-8. DOI: 10.1161/hc4601.099485. View

4.
Dikalov S, Nazarewicz R, Bikineyeva A, Hilenski L, Lassegue B, Griendling K . Nox2-induced production of mitochondrial superoxide in angiotensin II-mediated endothelial oxidative stress and hypertension. Antioxid Redox Signal. 2013; 20(2):281-94. PMC: 3887459. DOI: 10.1089/ars.2012.4918. View

5.
Thu V, Kim H, Ha S, Yoo J, Park W, Kim N . Glutathione peroxidase 1 protects mitochondria against hypoxia/reoxygenation damage in mouse hearts. Pflugers Arch. 2010; 460(1):55-68. DOI: 10.1007/s00424-010-0811-7. View