» Articles » PMID: 29317624

Fast Intensity Adaptation Enhances the Encoding of Sound in Drosophila

Overview
Journal Nat Commun
Specialty Biology
Date 2018 Jan 11
PMID 29317624
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

To faithfully encode complex stimuli, sensory neurons should correct, via adaptation, for stimulus properties that corrupt pattern recognition. Here we investigate sound intensity adaptation in the Drosophila auditory system, which is largely devoted to processing courtship song. Mechanosensory neurons (JONs) in the antenna are sensitive not only to sound-induced antennal vibrations, but also to wind or gravity, which affect the antenna's mean position. Song pattern recognition, therefore, requires adaptation to antennal position (stimulus mean) in addition to sound intensity (stimulus variance). We discover fast variance adaptation in Drosophila JONs, which corrects for background noise over the behaviorally relevant intensity range. We determine where mean and variance adaptation arises and how they interact. A computational model explains our results using a sequence of subtractive and divisive adaptation modules, interleaved by rectification. These results lay the foundation for identifying the molecular and biophysical implementation of adaptation to the statistics of natural sensory stimuli.

Citing Articles

Bifurcation enhances temporal information encoding in the olfactory periphery.

Choi K, Rosenbluth W, Graf I, Kadakia N, Emonet T ArXiv. 2024; .

PMID: 38855541 PMC: 11160886.


Complex dynamics of hair bundle of auditory nervous system (II): forced oscillations related to two cases of steady state.

Cao B, Gu H, Wang R Cogn Neurodyn. 2022; 16(5):1163-1188.

PMID: 36237408 PMC: 9508319. DOI: 10.1007/s11571-021-09745-3.


Neural network organization for courtship-song feature detection in Drosophila.

Baker C, McKellar C, Pang R, Nern A, Dorkenwald S, Pacheco D Curr Biol. 2022; 32(15):3317-3333.e7.

PMID: 35793679 PMC: 9378594. DOI: 10.1016/j.cub.2022.06.019.


Flexible filtering by neural inputs supports motion computation across states and stimuli.

Kohn J, Portes J, Christenson M, Abbott L, Behnia R Curr Biol. 2021; 31(23):5249-5260.e5.

PMID: 34670114 PMC: 8725177. DOI: 10.1016/j.cub.2021.09.061.


Sparse identification of contrast gain control in the fruit fly photoreceptor and amacrine cell layer.

Lazar A, Ukani N, Zhou Y J Math Neurosci. 2020; 10(1):3.

PMID: 32052209 PMC: 7016054. DOI: 10.1186/s13408-020-0080-5.


References
1.
Clarke S, Longtin A, Maler L . Contrast coding in the electrosensory system: parallels with visual computation. Nat Rev Neurosci. 2015; 16(12):733-44. DOI: 10.1038/nrn4037. View

2.
Petersen R, Panzeri S, Maravall M . Neural coding and contextual influences in the whisker system. Biol Cybern. 2009; 100(6):427-46. DOI: 10.1007/s00422-008-0290-5. View

3.
Nadrowski B, Albert J, Gopfert M . Transducer-based force generation explains active process in Drosophila hearing. Curr Biol. 2008; 18(18):1365-72. DOI: 10.1016/j.cub.2008.07.095. View

4.
Yang H, St-Pierre F, Sun X, Ding X, Lin M, Clandinin T . Subcellular Imaging of Voltage and Calcium Signals Reveals Neural Processing In Vivo. Cell. 2016; 166(1):245-57. PMC: 5606228. DOI: 10.1016/j.cell.2016.05.031. View

5.
Murthy M, Turner G . Whole-cell in vivo patch-clamp recordings in the Drosophila brain. Cold Spring Harb Protoc. 2013; 2013(2):140-8. DOI: 10.1101/pdb.prot071704. View