» Articles » PMID: 29289533

LDL Receptor Gene-ablated Hamsters: A Rodent Model of Familial Hypercholesterolemia With Dominant Inheritance and Diet-induced Coronary Atherosclerosis

Overview
Journal EBioMedicine
Date 2018 Jan 1
PMID 29289533
Citations 34
Authors
Affiliations
Soon will be listed here.
Abstract

Familial hypercholesterolemia (FH) is an autosomal dominant genetic disease caused mainly by LDL receptor (Ldlr) gene mutations. Unlike FH patients, heterozygous Ldlr knockout (KO) mice do not show a dominant FH trait. Hamsters, like humans, have the cholesteryl ester transfer protein, intestine-only ApoB editing and low hepatic cholesterol synthesis. Here, we generated Ldlr-ablated hamsters using CRISPR/Cas9 technology. Homozygous Ldlr KO hamsters on a chow diet developed hypercholesterolemia with LDL as the dominant lipoprotein and spontaneous atherosclerosis. On a high-cholesterol/high-fat (HCHF) diet, these animals exhibited severe hyperlipidemia and atherosclerotic lesions in the aorta and coronary arteries. Moreover, the heterozygous Ldlr KO hamsters on a short-term HCHF diet also had overt hypercholesterolemia, which could be effectively ameliorated with several lipid-lowering drugs. Importantly, heterozygotes on 3-month HCHF diets developed accelerated lesions in the aortas and coronary arteries. Our findings demonstrate that the Ldlr KO hamster is an animal model of choice for human FH and has great potential in translational research of hyperlipidemia and coronary heart disease.

Citing Articles

Fat-1 Ameliorates Metabolic Dysfunction-Associated Fatty Liver Disease and Atherosclerosis through Promoting the Nuclear Localization of PPARα in Hamsters.

Zhang W, Guo J, Miao G, Chen J, Xu Y, Lai P Research (Wash D C). 2025; 8:0577.

PMID: 40052160 PMC: 11884683. DOI: 10.34133/research.0577.


Motor protein KIF13B orchestrates hepatic metabolism to prevent metabolic dysfunction-associated fatty liver disease.

Miao G, Zhang W, Xu Y, Liu Y, Lai P, Guo J Mil Med Res. 2025; 12(1):11.

PMID: 40038775 PMC: 11877712. DOI: 10.1186/s40779-025-00594-3.


Impaired inflammatory resolution with severe SARS-CoV-2 infection in leptin knock out obese hamster.

Jiang R, Luo Y, Lin H, Zheng X, Zeng W, Liu M iScience. 2025; 28(2):111837.

PMID: 39981511 PMC: 11841202. DOI: 10.1016/j.isci.2025.111837.


ApoL1 risk allele accelerates high-fat diet-induced atherosclerosis in LDLR hamsters.

Xu Y, Zhang W, Guo J, Chen J, Miao G, Zhang L Genes Dis. 2024; 12(2):101379.

PMID: 39669548 PMC: 11635645. DOI: 10.1016/j.gendis.2024.101379.


Development of a hamster model of spontaneous hypertriglyceridemia in diabetes.

Ma Y, Wang Y, Liu G Animal Model Exp Med. 2024; 7(6):955-960.

PMID: 39529532 PMC: 11680477. DOI: 10.1002/ame2.12490.


References
1.
Getz G, Reardon C . Do the Apoe-/- and Ldlr-/- Mice Yield the Same Insight on Atherogenesis?. Arterioscler Thromb Vasc Biol. 2016; 36(9):1734-41. PMC: 5001905. DOI: 10.1161/ATVBAHA.116.306874. View

2.
Pursnani A, Massaro J, DAgostino Sr R, ODonnell C, Hoffmann U . Guideline-Based Statin Eligibility, Coronary Artery Calcification, and Cardiovascular Events. JAMA. 2015; 314(2):134-41. PMC: 4754085. DOI: 10.1001/jama.2015.7515. View

3.
Hobbs H, Brown M, Goldstein J . Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat. 1992; 1(6):445-66. DOI: 10.1002/humu.1380010602. View

4.
Ishibashi S, Brown M, Goldstein J, Gerard R, Hammer R, Herz J . Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest. 1993; 92(2):883-93. PMC: 294927. DOI: 10.1172/JCI116663. View

5.
Li Y, Fuchimoto D, Sudo M, Haruta H, Lin Q, Takayama T . Development of Human-Like Advanced Coronary Plaques in Low-Density Lipoprotein Receptor Knockout Pigs and Justification for Statin Treatment Before Formation of Atherosclerotic Plaques. J Am Heart Assoc. 2016; 5(4):e002779. PMC: 4843535. DOI: 10.1161/JAHA.115.002779. View