Gaborieau B, Vaysset H, Tesson F, Charachon I, Dib N, Bernier J
Nat Microbiol. 2024; 9(11):2847-2861.
PMID: 39482383
DOI: 10.1038/s41564-024-01832-5.
Roje B, Zhang B, Mastrorilli E, Kovacic A, Susak L, Ljubenkov I
Nature. 2024; 632(8027):1137-1144.
PMID: 39085612
PMC: 11358042.
DOI: 10.1038/s41586-024-07754-w.
Royer G, Clermont O, Marin J, Condamine B, Dion S, Blanquart F
Nat Commun. 2023; 14(1):3667.
PMID: 37339949
PMC: 10282060.
DOI: 10.1038/s41467-023-39428-y.
Marciano D, Wang C, Hsu T, Bourquard T, Atri B, Nehring R
Nat Commun. 2022; 13(1):3189.
PMID: 35680894
PMC: 9184624.
DOI: 10.1038/s41467-022-30889-1.
Hartmann F, Weiss T, Shen J, Smahajcsik D, Savickas S, Seibold G
mSystems. 2022; 7(3):e0021922.
PMID: 35430898
PMC: 9238402.
DOI: 10.1128/msystems.00219-22.
Bacterial respiration during stationary phase induces intracellular damage that leads to delayed regrowth.
Cesar S, Willis L, Huang K
iScience. 2022; 25(3):103765.
PMID: 35243217
PMC: 8858994.
DOI: 10.1016/j.isci.2022.103765.
Using MALDI-TOF spectra in epidemiological surveillance for the detection of bacterial subgroups with a possible epidemic potential.
Giraud-Gatineau A, Texier G, Fournier P, Raoult D, Chaudet H
BMC Infect Dis. 2021; 21(1):1109.
PMID: 34711189
PMC: 8554970.
DOI: 10.1186/s12879-021-06803-3.
Machine Learning Prediction of Resistance to Subinhibitory Antimicrobial Concentrations from Escherichia coli Genomes.
Benkwitz-Bedford S, Palm M, Demirtas T, Mustonen V, Farewell A, Warringer J
mSystems. 2021; 6(4):e0034621.
PMID: 34427505
PMC: 8407197.
DOI: 10.1128/mSystems.00346-21.
Bacterial fitness landscapes stratify based on proteome allocation associated with discrete aero-types.
Chen K, Anand A, Olson C, Sandberg T, Gao Y, Mih N
PLoS Comput Biol. 2021; 17(1):e1008596.
PMID: 33465077
PMC: 7846111.
DOI: 10.1371/journal.pcbi.1008596.
Mapping the Transcriptional and Fitness Landscapes of a Pathogenic Strain: The Effects of Organic Acid Stress under Aerobic and Anaerobic Conditions.
Bushell F, Herbert J, Sannasiddappa T, Warren D, Turner A, Falciani F
Genes (Basel). 2021; 12(1).
PMID: 33396416
PMC: 7824302.
DOI: 10.3390/genes12010053.
Major role of iron uptake systems in the intrinsic extra-intestinal virulence of the genus Escherichia revealed by a genome-wide association study.
Galardini M, Clermont O, Baron A, Busby B, Dion S, Schubert S
PLoS Genet. 2020; 16(10):e1009065.
PMID: 33112851
PMC: 7592755.
DOI: 10.1371/journal.pgen.1009065.
Temporal encoding of bacterial identity and traits in growth dynamics.
Zhang C, Song W, Ma H, Peng X, Anderson D, Fowler Jr V
Proc Natl Acad Sci U S A. 2020; 117(33):20202-20210.
PMID: 32747578
PMC: 7443910.
DOI: 10.1073/pnas.2008807117.
Chemical genetics in drug discovery.
Cacace E, Kritikos G, Typas A
Curr Opin Syst Biol. 2020; 4:35-42.
PMID: 32715163
PMC: 7371212.
DOI: 10.1016/j.coisb.2017.05.020.
Adaptations of Escherichia coli strains to oxidative stress are reflected in properties of their structural proteomes.
Mih N, Monk J, Fang X, Catoiu E, Heckmann D, Yang L
BMC Bioinformatics. 2020; 21(1):162.
PMID: 32349661
PMC: 7191737.
DOI: 10.1186/s12859-020-3505-y.
The impact of the genetic background on gene deletion phenotypes in Saccharomyces cerevisiae.
Galardini M, Busby B, Vieitez C, Dunham A, Typas A, Beltrao P
Mol Syst Biol. 2019; 15(12):e8831.
PMID: 31885205
PMC: 6901017.
DOI: 10.15252/msb.20198831.
Patterns of diverse gene functions in genomic neighborhoods predict gene function and phenotype.
Mihelcic M, Smuc T, Supek F
Sci Rep. 2019; 9(1):19537.
PMID: 31863070
PMC: 6925100.
DOI: 10.1038/s41598-019-55984-0.
Chemical-genetic profiling reveals limited cross-resistance between antimicrobial peptides with different modes of action.
Kintses B, Jangir P, Fekete G, Szamel M, Mehi O, Spohn R
Nat Commun. 2019; 10(1):5731.
PMID: 31844052
PMC: 6915728.
DOI: 10.1038/s41467-019-13618-z.
Escherichia coli Clonobiome: Assessing the Strain Diversity in Feces and Urine by Deep Amplicon Sequencing.
Shevchenko S, Radey M, Tchesnokova V, Kisiela D, Sokurenko E
Appl Environ Microbiol. 2019; 85(23).
PMID: 31540992
PMC: 6856317.
DOI: 10.1128/AEM.01866-19.
Predicting the decision making chemicals used for bacterial growth.
Ashino K, Sugano K, Amagasa T, Ying B
Sci Rep. 2019; 9(1):7251.
PMID: 31076576
PMC: 6510730.
DOI: 10.1038/s41598-019-43587-8.
Biochemistry, genetics and biotechnology of glycerol utilization in Pseudomonas species.
Poblete-Castro I, Wittmann C, Nikel P
Microb Biotechnol. 2019; 13(1):32-53.
PMID: 30883020
PMC: 6922529.
DOI: 10.1111/1751-7915.13400.