» Articles » PMID: 29259529

Genome Editing: Past, Present, and Future

Overview
Journal Yale J Biol Med
Specialty Biology
Date 2017 Dec 21
PMID 29259529
Citations 44
Authors
Affiliations
Soon will be listed here.
Abstract

The CRISPR-Cas genome editing tools have been adopted rapidly in the research community, and they are quickly finding applications in the commercial sector as well. Lest we lose track of the broader context, this Perspective presents a brief review of the history of the genome editing platforms and considers a few current technological issues. It then takes a very limited view into the future of this technology and highlights some of the societal issues that require examination and discussion.

Citing Articles

CRISPR-Based Editing of the Gene.

Potsenkovskaia E, Tvorogova V, Simonova V, Konstantinov Z, Kiseleva A, Matveenko A Plants (Basel). 2024; 13(22).

PMID: 39599434 PMC: 11598548. DOI: 10.3390/plants13223226.


Therapeutic Gene Editing in Dyslipidemias.

Tamehri Zadeh S, Shapiro M Rev Cardiovasc Med. 2024; 25(8):286.

PMID: 39228490 PMC: 11367006. DOI: 10.31083/j.rcm2508286.


Advancing crop disease resistance through genome editing: a promising approach for enhancing agricultural production.

Manzoor S, Nabi S, Rather T, Gani G, Mir Z, Wani A Front Genome Ed. 2024; 6:1399051.

PMID: 38988891 PMC: 11234172. DOI: 10.3389/fgeed.2024.1399051.


Gene editing in small and large animals for translational medicine: a review.

Mariano C, de Oliveira V, Ambrosio C Anim Reprod. 2024; 21(1):e20230089.

PMID: 38628493 PMC: 11019828. DOI: 10.1590/1984-3143-AR2023-0089.


Harnessing eukaryotic retroelement proteins for transgene insertion into human safe-harbor loci.

Zhang X, Van Treeck B, Horton C, McIntyre J, Palm S, Shumate J Nat Biotechnol. 2024; 43(1):42-51.

PMID: 38379101 PMC: 11371274. DOI: 10.1038/s41587-024-02137-y.


References
1.
Beumer K, Trautman J, Bozas A, Liu J, Rutter J, Gall J . Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proc Natl Acad Sci U S A. 2008; 105(50):19821-6. PMC: 2604940. DOI: 10.1073/pnas.0810475105. View

2.
Chu V, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K . Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol. 2015; 33(5):543-8. DOI: 10.1038/nbt.3198. View

3.
Gaj T, Gersbach C, Barbas 3rd C . ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013; 31(7):397-405. PMC: 3694601. DOI: 10.1016/j.tibtech.2013.04.004. View

4.
Gantz V, Jasinskiene N, Tatarenkova O, Fazekas A, Macias V, Bier E . Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci U S A. 2015; 112(49):E6736-43. PMC: 4679060. DOI: 10.1073/pnas.1521077112. View

5.
Maruyama T, Dougan S, Truttmann M, Bilate A, Ingram J, Ploegh H . Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol. 2015; 33(5):538-42. PMC: 4618510. DOI: 10.1038/nbt.3190. View