» Articles » PMID: 29246102

An Eigenvalue Test for Spatial Principal Component Analysis

Overview
Publisher Biomed Central
Specialty Biology
Date 2017 Dec 17
PMID 29246102
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Background: The spatial Principal Component Analysis (sPCA, Jombart (Heredity 101:92-103, 2008) is designed to investigate non-random spatial distributions of genetic variation. Unfortunately, the associated tests used for assessing the existence of spatial patterns (global and local test; (Heredity 101:92-103, 2008) lack statistical power and may fail to reveal existing spatial patterns. Here, we present a non-parametric test for the significance of specific patterns recovered by sPCA.

Results: We compared the performance of this new test to the original global and local tests using datasets simulated under classical population genetic models. Results show that our test outperforms the original global and local tests, exhibiting improved statistical power while retaining similar, and reliable type I errors. Moreover, by allowing to test various sets of axes, it can be used to guide the selection of retained sPCA components.

Conclusions: As such, our test represents a valuable complement to the original analysis, and should prove useful for the investigation of spatial genetic patterns.

Citing Articles

Relatedness of White-Tailed Deer from Culling Efforts Within Chronic Wasting Disease Management Zones in Minnesota.

Fameli A, Jennelle C, Edson J, Hildebrand E, Carstensen M, Walter W Pathogens. 2025; 14(1).

PMID: 39861028 PMC: 11768294. DOI: 10.3390/pathogens14010067.


Dealing With Assumptions and Sampling Bias in the Estimation of Effective Population Size: A Case Study in an Amphibian Population.

Cox K, Neyrinck S, Mergeay J Evol Appl. 2024; 17(9):e70015.

PMID: 39280086 PMC: 11393452. DOI: 10.1111/eva.70015.


Southern marsh deer (Blastocerus dichotomus) populations assessed using Amplicon Sequencing on fecal samples.

Wolfenson L, Pereira J, Ruzzante D, Sole-Cava A, McCracken G, Gomez-Fernandez M Sci Rep. 2024; 14(1):16169.

PMID: 39003391 PMC: 11246461. DOI: 10.1038/s41598-024-67062-1.


Large-scale assessment of genetic structure to assess risk of populations of a large herbivore to disease.

Walter W, Fameli A, Russo-Petrick K, Edson J, Rosenberry C, Schuler K Ecol Evol. 2024; 14(5):e11347.

PMID: 38774134 PMC: 11106048. DOI: 10.1002/ece3.11347.


Associations of major dietary patterns with cardiometabolic risk factors among Iranian patients with type 1 diabetes.

Shojaeian Z, Ebrahimi Z, Amiri F, Esmaillzadeh A, Sadeghi O, Jahed S Prev Med Rep. 2024; 38:102618.

PMID: 38375177 PMC: 10874838. DOI: 10.1016/j.pmedr.2024.102618.


References
1.
Jombart T . adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008; 24(11):1403-5. DOI: 10.1093/bioinformatics/btn129. View

2.
Novembre J, Stephens M . Interpreting principal component analyses of spatial population genetic variation. Nat Genet. 2008; 40(5):646-9. PMC: 3989108. DOI: 10.1038/ng.139. View

3.
Jombart T, Devillard S, Balloux F . Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 2010; 11:94. PMC: 2973851. DOI: 10.1186/1471-2156-11-94. View

4.
Jombart T, Pontier D, Dufour A . Genetic markers in the playground of multivariate analysis. Heredity (Edinb). 2009; 102(4):330-41. DOI: 10.1038/hdy.2008.130. View

5.
Montano V, Marcari V, Pavanello M, Anyaele O, Comas D, Destro-Bisol G . The influence of habitats on female mobility in Central and Western Africa inferred from human mitochondrial variation. BMC Evol Biol. 2013; 13:24. PMC: 3605107. DOI: 10.1186/1471-2148-13-24. View