» Articles » PMID: 29220194

Unraveling the Electronic Structure of Narrow Atomically Precise Chiral Graphene Nanoribbons

Overview
Specialty Chemistry
Date 2017 Dec 9
PMID 29220194
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Recent advances in graphene-nanoribbon-based research have demonstrated the controlled synthesis of chiral graphene nanoribbons (chGNRs) with atomic precision using strategies of on-surface chemistry. However, their electronic characterization, including typical figures of merit like band gap or frontier band's effective mass, has not yet been reported. We provide a detailed characterization of (3,1)-chGNRs on Au(111). The structure and epitaxy, as well as the electronic band structure of the ribbons, are analyzed by means of scanning tunneling microscopy and spectroscopy, angle-resolved photoemission, and density functional theory.

Citing Articles

Detecting the spin-polarization of edge states in graphene nanoribbons.

Brede J, Merino-Diez N, Berdonces-Layunta A, Sanz S, Dominguez-Celorrio A, Lobo-Checa J Nat Commun. 2023; 14(1):6677.

PMID: 37865684 PMC: 10590394. DOI: 10.1038/s41467-023-42436-7.


Circumventing the stability problems of graphene nanoribbon zigzag edges.

Lawrence J, Berdonces-Layunta A, Edalatmanesh S, Castro-Esteban J, Wang T, Jimenez-Martin A Nat Chem. 2022; 14(12):1451-1458.

PMID: 36163268 PMC: 10665199. DOI: 10.1038/s41557-022-01042-8.


On-surface cyclodehydrogenation reaction pathway determined by selective molecular deuterations.

Ma C, Xiao Z, Bonnesen P, Liang L, Puretzky A, Huang J Chem Sci. 2022; 12(47):15637-15644.

PMID: 35003594 PMC: 8653995. DOI: 10.1039/d1sc04908a.


Band Structure and Energy Level Alignment of Chiral Graphene Nanoribbons on Silver Surfaces.

Corso M, Menchon R, Piquero-Zulaica I, Vilas-Varela M, Ortega J, Pena D Nanomaterials (Basel). 2021; 11(12).

PMID: 34947652 PMC: 8705322. DOI: 10.3390/nano11123303.


Atomically precise graphene nanoribbons: interplay of structural and electronic properties.

Houtsma R, de la Rie J, Stohr M Chem Soc Rev. 2021; 50(11):6541-6568.

PMID: 34100034 PMC: 8185524. DOI: 10.1039/d0cs01541e.


References
1.
Chen Y, de Oteyza D, Pedramrazi Z, Chen C, Fischer F, Crommie M . Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano. 2013; 7(7):6123-8. DOI: 10.1021/nn401948e. View

2.
Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari A . 2D materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science. 2015; 347(6217):1246501. DOI: 10.1126/science.1246501. View

3.
Sanchez-Sanchez C, Dienel T, Deniz O, Ruffieux P, Berger R, Feng X . Purely Armchair or Partially Chiral: Noncontact Atomic Force Microscopy Characterization of Dibromo-Bianthryl-Based Graphene Nanoribbons Grown on Cu(111). ACS Nano. 2016; 10(8):8006-11. DOI: 10.1021/acsnano.6b04025. View

4.
Han P, Akagi K, Canova F, Shimizu R, Oguchi H, Shiraki S . Self-Assembly Strategy for Fabricating Connected Graphene Nanoribbons. ACS Nano. 2015; 9(12):12035-44. DOI: 10.1021/acsnano.5b04879. View

5.
Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S . Atomically precise bottom-up fabrication of graphene nanoribbons. Nature. 2010; 466(7305):470-3. DOI: 10.1038/nature09211. View