» Articles » PMID: 29180511

Functions of the TFIIE-Related Tandem Winged-Helix Domain of Rpc34 in RNA Polymerase III Initiation and Elongation

Overview
Journal Mol Cell Biol
Specialty Cell Biology
Date 2017 Nov 29
PMID 29180511
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Rpc34 is a subunit of the Rpc82/34/31 subcomplex residing on the DNA-binding cleft of RNA polymerase (Pol) III. Rpc34 contains a structurally flexible N-terminal tandem winged-helix (tWH) domain related to the TFIIE transcription factor. While the second WH (WH2) fold of the tWH domain is known to function in DNA melting activity during transcription initiation, the functional role of the WH1 fold is unknown. In this study, we generated a series of new Rpc34 tWH mutants conferring a cold-sensitive growth phenotype. We found that the tWH mutations severely compromised transcription activity due to destabilization of the preinitiation complex (PIC). Site-specific protein photo-cross-linking analysis indicated that the tWH domain persistently interacts with protein subunits of the Pol III cleft in the PIC and the ternary elongation complex (TEC). Furthermore, purified Pol III proteins with tWH mutations also showed reduced efficiency in RNA elongation. Our study results suggest that the tWH domain is an important protein module above the Pol III cleft that integrates protein and nucleic acid interactions for initiation and elongation.

Citing Articles

Mutational and biophysical analyses reveal a TFIIIC binding region in the TFIIF-related Rpc53 subunit of RNA polymerase III.

Chandra Shekhar A, Wu W, Chen H J Biol Chem. 2023; 299(7):104859.

PMID: 37230389 PMC: 10404625. DOI: 10.1016/j.jbc.2023.104859.


Proteotoxicity caused by perturbed protein complexes underlies hybrid incompatibility in yeast.

Swamy K, Lee H, Ladra C, Liu C, Chao J, Chen Y Nat Commun. 2022; 13(1):4394.

PMID: 35906261 PMC: 9338014. DOI: 10.1038/s41467-022-32107-4.


Knockdown NRPC2, 3, 8, NRPABC1 and NRPABC2 Affects RNAPIII Activity and Disrupts Seed Development in Arabidopsis.

Zhao H, Qin Y, Xiao Z, Liang K, Gong D, Sun Q Int J Mol Sci. 2021; 22(21).

PMID: 34768744 PMC: 8583208. DOI: 10.3390/ijms222111314.


Structure of human RNA polymerase III elongation complex.

Li L, Yu Z, Zhao D, Ren Y, Hou H, Xu Y Cell Res. 2021; 31(7):791-800.

PMID: 33674783 PMC: 8249397. DOI: 10.1038/s41422-021-00472-2.


Dynamics of the RNA polymerase I TFIIF/TFIIE-like subcomplex: a mini-review.

Knutson B, McNamar R, Rothblum L Biochem Soc Trans. 2020; 48(5):1917-1927.

PMID: 32915199 PMC: 10793690. DOI: 10.1042/BST20190848.


References
1.
Lannutti B, Persinger J, Bartholomew B . Probing the protein-DNA contacts of a yeast RNA polymerase III transcription complex in a crude extract: solid phase synthesis of DNA photoaffinity probes containing a novel photoreactive deoxycytidine analog. Biochemistry. 1996; 35(30):9821-31. DOI: 10.1021/bi960525x. View

2.
Fernandez-Tornero C, Bottcher B, Riva M, Carles C, Steuerwald U, Ruigrok R . Insights into transcription initiation and termination from the electron microscopy structure of yeast RNA polymerase III. Mol Cell. 2007; 25(6):813-23. DOI: 10.1016/j.molcel.2007.02.016. View

3.
Geiger S, Lorenzen K, Schreieck A, Hanecker P, Kostrewa D, Heck A . RNA polymerase I contains a TFIIF-related DNA-binding subcomplex. Mol Cell. 2010; 39(4):583-94. DOI: 10.1016/j.molcel.2010.07.028. View

4.
Khoo S, Wu C, Lin Y, Lee J, Chen H . Mapping the protein interaction network for TFIIB-related factor Brf1 in the RNA polymerase III preinitiation complex. Mol Cell Biol. 2013; 34(3):551-9. PMC: 3911497. DOI: 10.1128/MCB.00910-13. View

5.
Kassavetis G, Nguyen S, Kobayashi R, Kumar A, Geiduschek E, Pisano M . Cloning, expression, and function of TFC5, the gene encoding the B" component of the Saccharomyces cerevisiae RNA polymerase III transcription factor TFIIIB. Proc Natl Acad Sci U S A. 1995; 92(21):9786-90. PMC: 40887. DOI: 10.1073/pnas.92.21.9786. View