» Articles » PMID: 29176754

The O-specific Polysaccharide Lyase from the Phage LKA1 Tailspike Reduces Pseudomonas Virulence

Abstract

Pseudomonas phage LKA1 of the subfamily Autographivirinae encodes a tailspike protein (LKA1gp49) which binds and cleaves B-band LPS (O-specific antigen, OSA) of Pseudomonas aeruginosa PAO1. The crystal structure of LKA1gp49 catalytic domain consists of a beta-helix, an insertion domain and a C-terminal discoidin-like domain. The putative substrate binding and processing site is located on the face of the beta-helix whereas the C-terminal domain is likely involved in carbohydrates binding. NMR spectroscopy and mass spectrometry analyses of degraded LPS (OSA) fragments show an O5 serotype-specific polysaccharide lyase specificity. LKA1gp49 reduces virulence in an in vivo Galleria mellonella infection model and sensitizes P. aeruginosa to serum complement activity. This enzyme causes biofilm degradation and does not affect the activity of ciprofloxacin and gentamicin. This is the first comprehensive report on LPS-degrading lyase derived from a Pseudomonas phage. Biological properties reveal a potential towards its applications in antimicrobial design and as a microbiological or biotechnological tool.

Citing Articles

Bacteriophage-derived depolymerase: a review on prospective antibacterial agents to combat Klebsiella pneumoniae.

Jiao X, Wang M, Liu Y, Yang S, Yu Q, Qiao J Arch Virol. 2025; 170(4):70.

PMID: 40057622 DOI: 10.1007/s00705-025-06257-x.


Phage-derived proteins: Advancing food safety through biocontrol and detection of foodborne pathogens.

Choi D, Ryu S, Kong M Compr Rev Food Sci Food Saf. 2025; 24(2):e70124.

PMID: 39898971 PMC: 11891642. DOI: 10.1111/1541-4337.70124.


TSPDB: a curated resource of tailspike proteins with potential applications in phage research.

Lawal O, Goodridge L Front Big Data. 2024; 7:1437580.

PMID: 39664372 PMC: 11631844. DOI: 10.3389/fdata.2024.1437580.


Phages ZC01 and ZC03 require type-IV pilus for infection and have a potential for therapeutic applications.

Martins L, Dos Santos Junior A, Nicastro G, Scheunemann G, Angeli C, Rossi F Microbiol Spectr. 2024; :e0152724.

PMID: 39470273 PMC: 11619397. DOI: 10.1128/spectrum.01527-24.


Targeting Pseudomonas aeruginosa biofilm with an evolutionary trained bacteriophage cocktail exploiting phage resistance trade-offs.

Kunisch F, Campobasso C, Wagemans J, Yildirim S, Chan B, Schaudinn C Nat Commun. 2024; 15(1):8572.

PMID: 39362854 PMC: 11450229. DOI: 10.1038/s41467-024-52595-w.


References
1.
Kuzio J, Kropinski A . O-antigen conversion in Pseudomonas aeruginosa PAO1 by bacteriophage D3. J Bacteriol. 1983; 155(1):203-12. PMC: 217670. DOI: 10.1128/jb.155.1.203-212.1983. View

2.
Joiner K, HAMMER C, Brown E, Cole R, Frank M . Studies on the mechanism of bacterial resistance to complement-mediated killing. I. Terminal complement components are deposited and released from Salmonella minnesota S218 without causing bacterial death. J Exp Med. 1982; 155(3):797-808. PMC: 2186629. DOI: 10.1084/jem.155.3.797. View

3.
Kassa T, Chhibber S . Thermal treatment of the bacteriophage lysate of Klebsiella pneumoniae B5055 as a step for the purification of capsular depolymerase enzyme. J Virol Methods. 2011; 179(1):135-41. DOI: 10.1016/j.jviromet.2011.10.011. View

4.
Yurewicz E, GHALAMBOR M, Duckworth D, Heath E . Catalytic and molecular properties of a phage-induced capsular polysaccharide depolymerase. J Biol Chem. 1971; 246(18):5607-16. View

5.
Danis-Wlodarczyk K, Vandenheuvel D, Jang H, Briers Y, Olszak T, Arabski M . A proposed integrated approach for the preclinical evaluation of phage therapy in Pseudomonas infections. Sci Rep. 2016; 6:28115. PMC: 4908380. DOI: 10.1038/srep28115. View