» Articles » PMID: 29170491

Crystallite Size-dependent Metastable Phase Formation of TiAlN Coatings

Overview
Journal Sci Rep
Specialty Science
Date 2017 Nov 25
PMID 29170491
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

It is well known that surface energy differences thermodynamically stabilize nanocrystalline γ-AlO over α-AlO. Here, through correlative ab initio calculations and advanced material characterization at the nanometer scale, we demonstrate that the metastable phase formation of nanocrystalline TiAlN, an industrial benchmark coating material, is crystallite size-dependent. By relating calculated surface and volume energy contributions to the total energy, we predict the chemical composition-dependent phase boundary between the two metastable solid solution phases of cubic and wurzite TiAlN. This phase boundary is characterized by the critical crystallite size d . Crystallite size-dependent phase stability predictions are in very good agreement with experimental phase formation data where x was varied by utilizing combinatorial vapor phase condensation. The wide range of critical Al solubilities for metastable cubic TiAlN from x  = 0.4 to 0.9 reported in literature and the sobering disagreement thereof with DFT predictions can at least in part be rationalized based on the here identified crystallite size-dependent metastable phase formation. Furthermore, it is evident that predictions of critical Al solubilities in metastable cubic TiAlN are flawed, if the previously overlooked surface energy contribution to the total energy is not considered.

Citing Articles

Effect of Bilayer Thickness and Bias Potential on the Structure and Properties of (TiZr/Nb)N Multilayer Coatings as a Result of Arc-PVD Deposition.

Bauyrzhan R, Alexander P, Zhuldyz S, Dastan B, Vyacheslav B, Mukhamedova A Materials (Basel). 2022; 15(21).

PMID: 36363288 PMC: 9655261. DOI: 10.3390/ma15217696.


Phase Formation and Thermal Stability of Reactively Sputtered YTaO-ZrO Coatings.

Stelzer B, Pingen K, Hans M, Holzapfel D, Richter S, Mayer J Materials (Basel). 2021; 14(3).

PMID: 33540866 PMC: 7867362. DOI: 10.3390/ma14030692.


Comparative Investigations of AlCrN Coatings Formed by Cathodic Arc Evaporation under Different Nitrogen Pressure or Arc Current.

Gilewicz A, Kuznetsova T, Aizikovich S, Lapitskaya V, Khabarava A, Nikolaev A Materials (Basel). 2021; 14(2).

PMID: 33435544 PMC: 7826756. DOI: 10.3390/ma14020304.


Effect of Silicon Concentration on the Properties of Al-Cr-Si-N Coatings Deposited Using Cathodic Arc Evaporation.

Warcholinski B, Gilewicz A, Myslinski P, Dobruchowska E, Murzynski D, Kuznetsova T Materials (Basel). 2020; 13(21).

PMID: 33105785 PMC: 7660096. DOI: 10.3390/ma13214717.


TiCrN-TiAlN-TiAlSiN-TiAlSiCN multi-layers utilized to increase tillage tools useful lifetime.

Sharifi Malvajerdi S, Malvajerdi A, Ghanaatshoar M, Habibi M, Jahdi H Sci Rep. 2019; 9(1):19101.

PMID: 31836846 PMC: 6911051. DOI: 10.1038/s41598-019-55677-8.

References
1.
de Jong M, Chen W, Angsten T, Jain A, Notestine R, Gamst A . Charting the complete elastic properties of inorganic crystalline compounds. Sci Data. 2015; 2:150009. PMC: 4432655. DOI: 10.1038/sdata.2015.9. View

2.
Blochl , Jepsen , Andersen . Improved tetrahedron method for Brillouin-zone integrations. Phys Rev B Condens Matter. 1994; 49(23):16223-16233. DOI: 10.1103/physrevb.49.16223. View

3.
Perdew , Burke , Ernzerhof . Generalized Gradient Approximation Made Simple. Phys Rev Lett. 1996; 77(18):3865-3868. DOI: 10.1103/PhysRevLett.77.3865. View

4.
Euchner H, Mayrhofer P . Vacancy-dependent stability of cubic and wurtzite Ti Al N. Surf Coat Technol. 2015; 275:214-218. PMC: 4567048. DOI: 10.1016/j.surfcoat.2015.05.017. View

5.
Navrotsky A . Energetics of nanoparticle oxides: interplay between surface energy and polymorphism†. Geochem Trans. 2022; 4:34. PMC: 1475636. DOI: 10.1186/1467-4866-4-34. View