» Articles » PMID: 29146960

Assessing Species Biomass Contributions in Microbial Communities Via Metaproteomics

Overview
Journal Nat Commun
Specialty Biology
Date 2017 Nov 18
PMID 29146960
Citations 117
Authors
Affiliations
Soon will be listed here.
Abstract

Microbial community structure can be analyzed by quantifying cell numbers or by quantifying biomass for individual populations. Methods for quantifying cell numbers are already available (e.g., fluorescence in situ hybridization, 16-S rRNA gene amplicon sequencing), yet high-throughput methods for assessing community structure in terms of biomass are lacking. Here we present metaproteomics-based methods for assessing microbial community structure using protein abundance as a measure for biomass contributions of individual populations. We optimize the accuracy and sensitivity of the method using artificially assembled microbial communities and show that it is less prone to some of the biases found in sequencing-based methods. We apply the method to communities from two different environments, microbial mats from two alkaline soda lakes, and saliva from multiple individuals. We show that assessment of species biomass contributions adds an important dimension to the analysis of microbial community structure.

Citing Articles

PhyloFunc: phylogeny-informed functional distance as a new ecological metric for metaproteomic data analysis.

Wang L, Simopoulos C, Serrana J, Ning Z, Li Y, Sun B Microbiome. 2025; 13(1):50.

PMID: 39934908 PMC: 11817178. DOI: 10.1186/s40168-024-02015-4.


Meta-omics reveals role of photosynthesis in microbially induced carbonate precipitation at a CO-rich geyser.

Violette M, Hyland E, Burgener L, Ghosh A, Montoya B, Kleiner M ISME Commun. 2025; 4(1):ycae139.

PMID: 39866677 PMC: 11760937. DOI: 10.1093/ismeco/ycae139.


Advances in multi-omics integrated analysis methods based on the gut microbiome and their applications.

Duan D, Wang M, Han J, Li M, Wang Z, Zhou S Front Microbiol. 2025; 15():1509117.

PMID: 39831120 PMC: 11739165. DOI: 10.3389/fmicb.2024.1509117.


Large Quantities of Bacterial DNA and Protein in Common Dietary Protein Source Used in Microbiome Studies.

Bartlett A, Blakeley-Ruiz J, Richie T, Theriot C, Kleiner M bioRxiv. 2025; .

PMID: 39764025 PMC: 11703282. DOI: 10.1101/2023.12.07.570621.


Revealing taxonomy, activity, and substrate assimilation in mixed bacterial communities by GroEL-proteotyping-based stable isotope probing.

Klaes S, Madan S, Deobald D, Cooper M, Adrian L iScience. 2025; 27(12):111249.

PMID: 39759010 PMC: 11700628. DOI: 10.1016/j.isci.2024.111249.


References
1.
Timmins-Schiffman E, May D, Mikan M, Riffle M, Frazar C, Harvey H . Critical decisions in metaproteomics: achieving high confidence protein annotations in a sea of unknowns. ISME J. 2016; 11(2):309-314. PMC: 5270573. DOI: 10.1038/ismej.2016.132. View

2.
Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J . SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2013; 1(1):18. PMC: 3626529. DOI: 10.1186/2047-217X-1-18. View

3.
Muth T, Behne A, Heyer R, Kohrs F, Benndorf D, Hoffmann M . The MetaProteomeAnalyzer: a powerful open-source software suite for metaproteomics data analysis and interpretation. J Proteome Res. 2015; 14(3):1557-65. DOI: 10.1021/pr501246w. View

4.
Heyer R, Benndorf D, Kohrs F, De Vrieze J, Boon N, Hoffmann M . Proteotyping of biogas plant microbiomes separates biogas plants according to process temperature and reactor type. Biotechnol Biofuels. 2016; 9:155. PMC: 4960849. DOI: 10.1186/s13068-016-0572-4. View

5.
Vizcaino J, Csordas A, Del-Toro N, Dianes J, Griss J, Lavidas I . 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2015; 44(D1):D447-56. PMC: 4702828. DOI: 10.1093/nar/gkv1145. View