» Articles » PMID: 29146907

Giant Magnetic Splitting Inducing Near-unity Valley Polarization in Van Der Waals Heterostructures

Overview
Journal Nat Commun
Specialty Biology
Date 2017 Nov 18
PMID 29146907
Citations 26
Authors
Affiliations
Soon will be listed here.
Abstract

Monolayers of semiconducting transition metal dichalcogenides exhibit intriguing fundamental physics of strongly coupled spin and valley degrees of freedom for charge carriers. While the possibility of exploiting these properties for information processing stimulated concerted research activities towards the concept of valleytronics, maintaining control over spin-valley polarization proved challenging in individual monolayers. A promising alternative route explores type II band alignment in artificial van der Waals heterostructures. The resulting formation of interlayer excitons combines the advantages of long carrier lifetimes and spin-valley locking. Here, we demonstrate artificial design of a two-dimensional heterostructure enabling intervalley transitions that are not accessible in monolayer systems. The resulting giant effective g factor of -15 for interlayer excitons induces near-unity valley polarization via valley-selective energetic splitting in high magnetic fields, even after nonselective excitation. Our results highlight the potential to deterministically engineer novel valley properties in van der Waals heterostructures using crystallographic alignment.

Citing Articles

Controlling Coulomb correlations and fine structure of quasi-one-dimensional excitons by magnetic order.

Liebich M, Florian M, Nilforoushan N, Mooshammer F, Koulouklidis A, Wittmann L Nat Mater. 2025; 24(3):384-390.

PMID: 39972109 PMC: 11879853. DOI: 10.1038/s41563-025-02120-1.


In-Plane Anisotropy in van der Waals NiTeSe Ternary Alloy.

Lam N, Rhee T, Kim S, Choi B, Hoang D, Duvjir G Adv Sci (Weinh). 2025; 12(9):e2410549.

PMID: 39804976 PMC: 11884612. DOI: 10.1002/advs.202410549.


Deterministic reflection contrast ellipsometry for thick multilayer two-dimensional heterostructures.

Lee K, Youn J, Yoo S Nanophotonics. 2024; 13(8):1417-1424.

PMID: 39679220 PMC: 11636472. DOI: 10.1515/nanoph-2023-0753.


Spectroscopic ellipsometry for low-dimensional materials and heterostructures.

Yoo S, Park Q Nanophotonics. 2024; 11(12):2811-2825.

PMID: 39634089 PMC: 11501394. DOI: 10.1515/nanoph-2022-0039.


Indirect-To-Direct Bandgap Crossover and Room-Temperature Valley Polarization of Multilayer MoS Achieved by Electrochemical Intercalation.

Jo M, Lee E, Moon E, Jang B, Kim J, Dhakal K Adv Mater. 2024; 36(47):e2407997.

PMID: 39370590 PMC: 11586812. DOI: 10.1002/adma.202407997.


References
1.
Stier A, McCreary K, Jonker B, Kono J, Crooker S . Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla. Nat Commun. 2016; 7:10643. PMC: 4748133. DOI: 10.1038/ncomms10643. View

2.
Xiao D, Liu G, Feng W, Xu X, Yao W . Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys Rev Lett. 2012; 108(19):196802. DOI: 10.1103/PhysRevLett.108.196802. View

3.
Hong X, Kim J, Shi S, Zhang Y, Jin C, Sun Y . Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures. Nat Nanotechnol. 2014; 9(9):682-6. DOI: 10.1038/nnano.2014.167. View

4.
Fang H, Battaglia C, Carraro C, Nemsak S, Ozdol B, Kang J . Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc Natl Acad Sci U S A. 2014; 111(17):6198-202. PMC: 4035947. DOI: 10.1073/pnas.1405435111. View

5.
Srivastava A, Sidler M, Allain A, Lembke D, Kis A, Imamoglu A . Optically active quantum dots in monolayer WSe2. Nat Nanotechnol. 2015; 10(6):491-6. DOI: 10.1038/nnano.2015.60. View