» Articles » PMID: 29138319

Frequent Nonallelic Gene Conversion on the Human Lineage and Its Effect on the Divergence of Gene Duplicates

Overview
Specialty Science
Date 2017 Nov 16
PMID 29138319
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

Gene conversion is the copying of a genetic sequence from a "donor" region to an "acceptor." In nonallelic gene conversion (NAGC), the donor and the acceptor are at distinct genetic loci. Despite the role NAGC plays in various genetic diseases and the concerted evolution of gene families, the parameters that govern NAGC are not well characterized. Here, we survey duplicate gene families and identify converted tracts in 46% of them. These conversions reflect a large GC bias of NAGC. We develop a sequence evolution model that leverages substantially more information in duplicate sequences than used by previous methods and use it to estimate the parameters that govern NAGC in humans: a mean converted tract length of 250 bp and a probability of [Formula: see text] per generation for a nucleotide to be converted (an order of magnitude higher than the point mutation rate). Despite this high baseline rate, we show that NAGC slows down as duplicate sequences diverge-until an eventual "escape" of the sequences from its influence. As a result, NAGC has a small average effect on the sequence divergence of duplicates. This work improves our understanding of the NAGC mechanism and the role that it plays in the evolution of gene duplicates.

Citing Articles

Estimating Gene Conversion Tract Length and Rate From PacBio HiFi Data.

Charmouh A, Porsborg P, Hansen L, Besenbacher S, Boeg Winge S, Almstrup K Mol Biol Evol. 2025; 42(2).

PMID: 39982809 PMC: 11844249. DOI: 10.1093/molbev/msaf019.


Interlocus Gene Conversion, Natural Selection, and Paralog Homogenization.

Yang Y, Xu T, Conant G, Kishino H, Thorne J, Ji X Mol Biol Evol. 2023; 40(9).

PMID: 37675606 PMC: 10503786. DOI: 10.1093/molbev/msad198.


Emergence and influence of sequence bias in evolutionarily malleable, mammalian tandem arrays.

Brovkina M, Chapman M, Holding M, Clowney E BMC Biol. 2023; 21(1):179.

PMID: 37612705 PMC: 10463633. DOI: 10.1186/s12915-023-01673-4.


Increased mutation and gene conversion within human segmental duplications.

Vollger M, Dishuck P, Harvey W, DeWitt W, Guitart X, Goldberg M Nature. 2023; 617(7960):325-334.

PMID: 37165237 PMC: 10172114. DOI: 10.1038/s41586-023-05895-y.


Silencing RNAs expressed from W-linked "retrocopies" target that gene during female sex determination in .

Harvey-Samuel T, Xu X, Anderson M, Paladino L, Purusothaman D, Norman V Proc Natl Acad Sci U S A. 2022; 119(46):e2206025119.

PMID: 36343250 PMC: 9674220. DOI: 10.1073/pnas.2206025119.


References
1.
Betran E, Rozas J, Navarro A, Barbadilla A . The estimation of the number and the length distribution of gene conversion tracts from population DNA sequence data. Genetics. 1997; 146(1):89-99. PMC: 1207963. DOI: 10.1093/genetics/146.1.89. View

2.
Casola C, Conant G, Hahn M . Very low rate of gene conversion in the yeast genome. Mol Biol Evol. 2012; 29(12):3817-26. DOI: 10.1093/molbev/mss192. View

3.
Balding D, Nichols R, Hunt D . Detecting gene conversion: primate visual pigment genes. Proc Biol Sci. 1992; 249(1326):275-80. DOI: 10.1098/rspb.1992.0114. View

4.
Brown D, Sugimoto K . 5 S DNAs of Xenopus laevis and Xenopus mulleri: evolution of a gene family. J Mol Biol. 1973; 78(3):397-415. DOI: 10.1016/0022-2836(73)90464-6. View

5.
Duret L, Galtier N . Biased gene conversion and the evolution of mammalian genomic landscapes. Annu Rev Genomics Hum Genet. 2009; 10:285-311. DOI: 10.1146/annurev-genom-082908-150001. View