» Articles » PMID: 29133423

Gap Junctional Coupling Between Retinal Amacrine and Ganglion Cells Underlies Coherent Activity Integral to Global Object Perception

Overview
Specialty Science
Date 2017 Nov 15
PMID 29133423
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

Coherent spike activity occurs between widely separated retinal ganglion cells (RGCs) in response to a large, contiguous object, but not to disjointed objects. Since the large spatial separation between the RGCs precludes common excitatory inputs from bipolar cells, the mechanism underlying this long-range coherence remains unclear. Here, we show that electrical coupling between RGCs and polyaxonal amacrine cells in mouse retina forms the synaptic mechanism responsible for long-range coherent activity in the retina. Pharmacological blockade of gap junctions or genetic ablation of connexin 36 (Cx36) subunits eliminates the long-range correlated spiking between RGCs. Moreover, we find that blockade of gap junctions or ablation of Cx36 significantly reduces the ability of mice to discriminate large, global objects from small, disjointed stimuli. Our results indicate that synchronous activity of RGCs, derived from electrical coupling with amacrine cells, encodes information critical to global object perception.

Citing Articles

Retinal ganglion cells encode the direction of motion outside their classical receptive field.

Riccitelli S, Yaakov H, Heukamp A, Ankri L, Rivlin-Etzion M Proc Natl Acad Sci U S A. 2025; 122(1):e2415223122.

PMID: 39793063 PMC: 11725840. DOI: 10.1073/pnas.2415223122.


Gap junctions fine-tune ganglion cell signals to equalize response kinetics within a given electrically coupled array.

Szarka G, Ganczer A, Balogh M, Tengolics A, Futacsi A, Kenyon G iScience. 2024; 27(6):110099.

PMID: 38947503 PMC: 11214328. DOI: 10.1016/j.isci.2024.110099.


Connexins Biology in the Pathophysiology of Retinal Diseases.

Ponce-Mora A, Yuste A, Perini-Villanueva G, Miranda M, Bejarano E Adv Exp Med Biol. 2023; 1415:229-234.

PMID: 37440038 DOI: 10.1007/978-3-031-27681-1_33.


On the Functional Role of Gamma Synchronization in the Retinogeniculate System of the Cat.

Neuenschwander S, Rosso G, Branco N, Freitag F, Tehovnik E, Schmidt K J Neurosci. 2023; 43(28):5204-5220.

PMID: 37328291 PMC: 10342227. DOI: 10.1523/JNEUROSCI.1550-22.2023.


Analytical methods for assessing retinal cell coupling using cut-loading.

Myles W, McFadden S PLoS One. 2022; 17(7):e0271744.

PMID: 35853039 PMC: 9295955. DOI: 10.1371/journal.pone.0271744.


References
1.
Hu E, Bloomfield S . Gap junctional coupling underlies the short-latency spike synchrony of retinal alpha ganglion cells. J Neurosci. 2003; 23(17):6768-77. PMC: 6740719. View

2.
Kenyon G, Travis B, Theiler J, George J, Stephens G, Marshak D . Stimulus-specific oscillations in a retinal model. IEEE Trans Neural Netw. 2004; 15(5):1083-91. DOI: 10.1109/TNN.2004.832722. View

3.
Prusky G, West P, Douglas R . Behavioral assessment of visual acuity in mice and rats. Vision Res. 2000; 40(16):2201-9. DOI: 10.1016/s0042-6989(00)00081-x. View

4.
Marc R, Jones B . Molecular phenotyping of retinal ganglion cells. J Neurosci. 2002; 22(2):413-27. PMC: 6758675. View

5.
Roelfsema P, Singer W . Detecting connectedness. Cereb Cortex. 1998; 8(5):385-96. DOI: 10.1093/cercor/8.5.385. View