» Articles » PMID: 29124152

Construction of P-glycoprotein Incorporated Tethered Lipid Bilayer Membranes

Overview
Specialty Biochemistry
Date 2017 Nov 11
PMID 29124152
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

To investigate drug-membrane protein interactions, an artificial tethered lipid bilayer system was constructed for the functional integration of membrane proteins with large extra-membrane domains such as multi-drug resistance protein 1 (MDR1). In this study, a modified lipid (, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino (polyethylene glycol)-2000] (DSPE-PEG)) was utilized as a spacer molecule to elevate lipid membrane from the sensor surface and generate a reservoir underneath. Concentration of DSPE-PEG molecule significantly affected the liposome binding/spreading and lipid bilayer formation, and 0.03 mg/mL of DSPE-PEG provided optimum conditions for membrane protein integration. Further, the incorporation of MDR1 increased the local rigidity on the platform. Antibody binding studies showed the functional integration of MDR1 protein into lipid bilayer platform. The platform allowed to follow MDR!-statin-based drug interactions . Each binding event and lipid bilayer formation was monitored in real-time using Surface Plasmon Resonance and Quartz Crystal Microbalance-Dissipation systems, and Atomic Force Microscopy was used for visualization experiments.

Citing Articles

In situ synthesis and dynamic simulation of molecularly imprinted polymeric nanoparticles on a micro-reactor system.

Erdem O, Es I, Saylan Y, Atabay M, Gungen M, Olmez K Nat Commun. 2023; 14(1):4840.

PMID: 37563147 PMC: 10415298. DOI: 10.1038/s41467-023-40413-8.


Aptamer-Based Point-of-Care Devices: Emerging Technologies and Integration of Computational Methods.

Aslan Y, Atabay M, Chowdhury H, Gokturk I, Saylan Y, Inci F Biosensors (Basel). 2023; 13(5).

PMID: 37232930 PMC: 10216294. DOI: 10.3390/bios13050569.


The complex relationship between multiple drug resistance and the tumor pH gradient: a review.

Koltai T Cancer Drug Resist. 2022; 5(2):277-303.

PMID: 35800371 PMC: 9255250. DOI: 10.20517/cdr.2021.134.


Smart materials-integrated sensor technologies for COVID-19 diagnosis.

Erdem O, Derin E, Sagdic K, Yilmaz E, Inci F Emergent Mater. 2021; 4(1):169-185.

PMID: 33495747 PMC: 7817967. DOI: 10.1007/s42247-020-00150-w.


Advances in Biomimetic Systems for Molecular Recognition and Biosensing.

Saylan Y, Erdem O, Inci F, Denizli A Biomimetics (Basel). 2020; 5(2).

PMID: 32408710 PMC: 7345028. DOI: 10.3390/biomimetics5020020.


References
1.
Reimhult E, Zach M, Hook F, Kasemo B . A multitechnique study of liposome adsorption on Au and lipid bilayer formation on SiO2. Langmuir. 2006; 22(7):3313-9. DOI: 10.1021/la0519554. View

2.
Atanasov V, Knorr N, Duran R, Ingebrandt S, Offenhausser A, Knoll W . Membrane on a chip: a functional tethered lipid bilayer membrane on silicon oxide surfaces. Biophys J. 2005; 89(3):1780-8. PMC: 1366681. DOI: 10.1529/biophysj.105.061374. View

3.
Milhiet P, Gubellini F, Berquand A, Dosset P, Rigaud J, le Grimellec C . High-resolution AFM of membrane proteins directly incorporated at high density in planar lipid bilayer. Biophys J. 2006; 91(9):3268-75. PMC: 1614478. DOI: 10.1529/biophysj.106.087791. View

4.
Allen C, Dos Santos N, Gallagher R, Chiu G, Shu Y, Li W . Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol). Biosci Rep. 2002; 22(2):225-50. DOI: 10.1023/a:1020186505848. View

5.
Peetla C, Stine A, Labhasetwar V . Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery. Mol Pharm. 2009; 6(5):1264-76. PMC: 2757518. DOI: 10.1021/mp9000662. View