» Articles » PMID: 29110088

Carbohydrate Active Enzyme Domains from Extreme Thermophiles: Components of a Modular Toolbox for Lignocellulose Degradation

Overview
Journal Extremophiles
Publisher Springer
Date 2017 Nov 8
PMID 29110088
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Lignocellulosic biomass is a promising feedstock for the manufacture of biodegradable and renewable bioproducts. However, the complex lignocellulosic polymeric structure of woody tissue is difficult to access without extensive industrial pre-treatment. Enzyme processing of partly depolymerised biomass is an established technology, and there is evidence that high temperature (extremely thermophilic) lignocellulose degrading enzymes [carbohydrate active enzymes (CAZymes)] may enhance processing efficiency. However, wild-type thermophilic CAZymes will not necessarily be functionally optimal under industrial pre-treatment conditions. With recent advances in synthetic biology, it is now potentially possible to build CAZyme constructs from individual protein domains, tailored to the conditions of specific industrial processes. In this review, we identify a 'toolbox' of thermostable CAZyme domains from extremely thermophilic organisms and highlight recent advances in CAZyme engineering which will allow for the rational design of CAZymes tailored to specific aspects of lignocellulose digestion.

Citing Articles

CANDy: Automated analysis of domain architectures in carbohydrate-active enzymes.

Windels A, Franceus J, Pleiss J, Desmet T PLoS One. 2024; 19(7):e0306410.

PMID: 38990885 PMC: 11238990. DOI: 10.1371/journal.pone.0306410.


Extremophiles in a changing world.

Cowan D, Albers S, Antranikian G, Atomi H, Averhoff B, Basen M Extremophiles. 2024; 28(2):26.

PMID: 38683238 PMC: 11058618. DOI: 10.1007/s00792-024-01341-7.


Unveiling lignocellulolytic trait of a goat omasum inhabitant Klebsiella variicola strain HSTU-AAM51 in light of biochemical and genome analyses.

Abdullah-Al-Mamun M, Hossain M, Debnath G, Sultana S, Rahman A, Hasan Z Braz J Microbiol. 2022; 53(1):99-130.

PMID: 35088248 PMC: 8882562. DOI: 10.1007/s42770-021-00660-7.


Heterologous Expression and Characterization of a High-Efficiency Chitosanase From SY1 Suitable for Production of Chitosan Oligosaccharides.

Wang J, Li X, Chen H, Lin B, Zhao L Front Microbiol. 2021; 12:781138.

PMID: 34912320 PMC: 8667621. DOI: 10.3389/fmicb.2021.781138.


Role of extremophiles and their extremozymes in biorefinery process of lignocellulose degradation.

Chettri D, Verma A, Sarkar L, Verma A Extremophiles. 2021; 25(3):203-219.

PMID: 33768388 DOI: 10.1007/s00792-021-01225-0.


References
1.
Mir B, Myburg A, Mizrachi E, Cowan D . In planta expression of hyperthermophilic enzymes as a strategy for accelerated lignocellulosic digestion. Sci Rep. 2017; 7(1):11462. PMC: 5597601. DOI: 10.1038/s41598-017-11026-1. View

2.
Kuuskeri J, Hakkinen M, Laine P, Smolander O, Tamene F, Miettinen S . Time-scale dynamics of proteome and transcriptome of the white-rot fungus Phlebia radiata: growth on spruce wood and decay effect on lignocellulose. Biotechnol Biofuels. 2016; 9(1):192. PMC: 5011852. DOI: 10.1186/s13068-016-0608-9. View

3.
Arab-Jaziri F, Bissaro B, Tellier C, Dion M, Faure R, ODonohue M . Enhancing the chemoenzymatic synthesis of arabinosylated xylo-oligosaccharides by GH51 α-L-arabinofuranosidase. Carbohydr Res. 2014; 401:64-72. DOI: 10.1016/j.carres.2014.10.029. View

4.
Hendriks A, Zeeman G . Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol. 2008; 100(1):10-8. DOI: 10.1016/j.biortech.2008.05.027. View

5.
Valenzuela S, Diaz P, Pastor F . Modular glucuronoxylan-specific xylanase with a family CBM35 carbohydrate-binding module. Appl Environ Microbiol. 2012; 78(11):3923-31. PMC: 3346383. DOI: 10.1128/AEM.07932-11. View