» Articles » PMID: 29100061

Apolipoprotein C-II: New Findings Related to Genetics, Biochemistry, and Role in Triglyceride Metabolism

Overview
Journal Atherosclerosis
Publisher Elsevier
Date 2017 Nov 4
PMID 29100061
Citations 100
Authors
Affiliations
Soon will be listed here.
Abstract

Apolipoprotein C-II (apoC-II) is a small exchangeable apolipoprotein found on triglyceride-rich lipoproteins (TRL), such as chylomicrons (CM) and very low-density lipoproteins (VLDL), and on high-density lipoproteins (HDL), particularly during fasting. ApoC-II plays a critical role in TRL metabolism by acting as a cofactor of lipoprotein lipase (LPL), the main enzyme that hydrolyses plasma triglycerides (TG) on TRL. Here, we present an overview of the role of apoC-II in TG metabolism, emphasizing recent novel findings regarding its transcriptional regulation and biochemistry. We also review the 24 genetic mutations in the APOC2 gene reported to date that cause hypertriglyceridemia (HTG). Finally, we describe the clinical presentation of apoC-II deficiency and assess the current therapeutic approaches, as well as potential novel emerging therapies.

Citing Articles

An overview of persistent chylomicronemia: much more than meets the eye.

Larouche M, Watts G, Ballantyne C, Gaudet D Curr Opin Endocrinol Diabetes Obes. 2025; 32(2):75-88.

PMID: 39927417 PMC: 11872273. DOI: 10.1097/MED.0000000000000903.


Practical Approaches to Managing Dyslipidemia in Patients With Metabolic Dysfunction-Associated Steatotic Liver Disease.

Bril F, Berg G, Barchuk M, Nogueira J J Lipid Atheroscler. 2025; 14(1):5-29.

PMID: 39911965 PMC: 11791423. DOI: 10.12997/jla.2025.14.1.5.


Chylomicron Characteristics Are Associated With Microsomal Triglyceride Transfer Protein in an Animal Model of Diet-Induced Dysbiosis.

Olano C, Farina G, Wiszniewski M, Medel J, Morales C, Friedman S J Lipid Atheroscler. 2025; 14(1):106-119.

PMID: 39911957 PMC: 11791422. DOI: 10.12997/jla.2025.14.1.106.


Stoichiometric constraints for detection of EV-borne biomarkers in blood.

Zarovni N, Mladenovic D, Brambilla D, Panico F, Chiari M J Extracell Vesicles. 2025; 14(2):e70034.

PMID: 39901737 PMC: 11791308. DOI: 10.1002/jev2.70034.


Lipoprotein Lipase: Structure, Function, and Genetic Variation.

Perera S, Wang J, McIntyre A, Hegele R Genes (Basel). 2025; 16(1).

PMID: 39858602 PMC: 11764694. DOI: 10.3390/genes16010055.


References
1.
NORDOY A, Barstad L, Connor W, Hatcher L . Absorption of the n-3 eicosapentaenoic and docosahexaenoic acids as ethyl esters and triglycerides by humans. Am J Clin Nutr. 1991; 53(5):1185-90. DOI: 10.1093/ajcn/53.5.1185. View

2.
Larosa J, Levy R, Herbert P, Lux S, Fredrickson D . A specific apoprotein activator for lipoprotein lipase. Biochem Biophys Res Commun. 1970; 41(1):57-62. DOI: 10.1016/0006-291x(70)90468-7. View

3.
Li C, Clark M, Chimento M, Curcio C . Apolipoprotein localization in isolated drusen and retinal apolipoprotein gene expression. Invest Ophthalmol Vis Sci. 2006; 47(7):3119-28. DOI: 10.1167/iovs.05-1446. View

4.
Green D, Young H, Valencia J . Current prospects of type II interferon γ signaling and autoimmunity. J Biol Chem. 2017; 292(34):13925-13933. PMC: 5572907. DOI: 10.1074/jbc.R116.774745. View

5.
Segrest J, Jones M, De Loof H, Brouillette C, Venkatachalapathi Y, Anantharamaiah G . The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. J Lipid Res. 1992; 33(2):141-66. View