» Articles » PMID: 29093519

Ultra-Broadband, Lithography-Free, and Large-Scale Compatible Perfect Absorbers: The Optimum Choice of Metal Layers in Metal-Insulator Multilayer Stacks

Overview
Journal Sci Rep
Specialty Science
Date 2017 Nov 3
PMID 29093519
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

We report ultra-broadband perfect absorbers for visible and near-infrared applications that are based on multilayers of metal-insulator (MI) stacks fabricated employing straightforward layer deposition techniques and are, therefore, lithography-free and large-scale compatible. We scrutinize the impact of different physical parameters of an MIMI absorber structure with analysis of each contributing metal layer. After obtaining the optimal design parameters (i.e. material selection and their thicknesses) with both simulation and numerical analysis (Transfer Matrix Method) methods, an experimental sample is fabricated and characterized. Our fabricated MIMI absorber consists of an optically thick tungsten (W) back reflector layer followed by 80 nm aluminum oxide (AlO), 10 nm titanium (Ti), and finally another 80 nm AlO. The experimental results demonstrate over 90 percent absorption between 400 nm and 1640 nm wavelengths that is optimized for ultra-broadband absorption in MIMI structures. Moreover, the impedance matching method with free-space is used to shed light on the metallic layer selection process.

Citing Articles

High-Efficiency Solar Hybrid Photovoltaic/Thermal System Enabled by Ultrathin Asymmetric Fabry-Perot Cavity.

Wei R, Xu T, Guo C ACS Photonics. 2025; 12(2):628-635.

PMID: 39989933 PMC: 11843714. DOI: 10.1021/acsphotonics.4c01315.


Angle-Insensitive Ultrathin Broadband Visible Absorber Based on Dielectric-Semiconductor-Lossy Metal Film Stacks.

Ma Y, Hu J, Li W, Yang Z Nanomaterials (Basel). 2023; 13(19).

PMID: 37836367 PMC: 10574125. DOI: 10.3390/nano13192726.


Control of Nanoscale Heat Generation with Lithography-Free Metasurface Absorbers.

Stewart J, Nebabu T, Mikkelsen M Nano Lett. 2022; 22(13):5151-5157.

PMID: 35776079 PMC: 9284615. DOI: 10.1021/acs.nanolett.2c00761.


Ultra-Broadband, Polarization-Irrelevant Near-Perfect Absorber Based on Composite Structure.

Meng Y, Wu J, Liu S, Li Y, Hu B, Jin S Micromachines (Basel). 2022; 13(2).

PMID: 35208391 PMC: 8878957. DOI: 10.3390/mi13020267.


Narrowband and flexible perfect absorber based on a thin-film nano-resonator incorporating a dielectric overlay.

Park C, Lee S Sci Rep. 2020; 10(1):17727.

PMID: 33082497 PMC: 7576172. DOI: 10.1038/s41598-020-74893-1.


References
1.
Atar F, Battal E, Aygun L, Daglar B, Bayindir M, Okyay A . Plasmonically enhanced hot electron based photovoltaic device. Opt Express. 2013; 21(6):7196-201. DOI: 10.1364/OE.21.007196. View

2.
Li Z, Palacios E, Butun S, Kocer H, Aydin K . Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings. Sci Rep. 2015; 5:15137. PMC: 4598830. DOI: 10.1038/srep15137. View

3.
Dereshgi S, Sisman Z, Topalli K, Okyay A . Plasmonically enhanced metal-insulator multistacked photodetectors with separate absorption and collection junctions for near-infrared applications. Sci Rep. 2017; 7:42349. PMC: 5299435. DOI: 10.1038/srep42349. View

4.
Kocer H, Butun S, Li Z, Aydin K . Reduced near-infrared absorption using ultra-thin lossy metals in Fabry-Perot cavities. Sci Rep. 2015; 5:8157. PMC: 4313091. DOI: 10.1038/srep08157. View

5.
Atwater H, Polman A . Plasmonics for improved photovoltaic devices. Nat Mater. 2010; 9(3):205-13. DOI: 10.1038/nmat2629. View