» Articles » PMID: 29089497

Transformation of Doped Graphite into Cluster-encapsulated Fullerene Cages

Overview
Journal Nat Commun
Specialty Biology
Date 2017 Nov 2
PMID 29089497
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

An ultimate goal in carbon nanoscience is to decipher formation mechanisms of highly ordered systems. Here, we disclose chemical processes that result in formation of high-symmetry clusterfullerenes, which attract interest for use in applications that span biomedicine to molecular electronics. The conversion of doped graphite into a C cage is shown to occur through bottom-up self-assembly reactions. Unlike conventional forms of fullerene, the iconic Buckminsterfullerene cage, I -C, is entirely avoided in the bottom-up formation mechanism to afford synthesis of group 3-based metallic nitride clusterfullerenes. The effects of structural motifs and cluster-cage interactions on formation of compounds in the solvent-extractable C-C region are determined by in situ studies of defined clusterfullerenes under typical synthetic conditions. This work establishes the molecular origin and mechanism that underlie formation of unique carbon cage materials, which may be used as a benchmark to guide future nanocarbon explorations.

Citing Articles

Are U-U Bonds Inside Fullerenes Really Unwilling Bonds?.

Moreno-Vicente A, Rosello Y, Chen N, Echegoyen L, Dunk P, Rodriguez-Fortea A J Am Chem Soc. 2023; 145(12):6710-6718.

PMID: 36872864 PMC: 10064334. DOI: 10.1021/jacs.2c12346.


Self-driven carbon atom implantation into fullerene embedding metal-carbon cluster.

Guan R, Chen Z, Huang J, Tian H, Xin J, Ying S Proc Natl Acad Sci U S A. 2022; 119(39):e2202563119.

PMID: 36122234 PMC: 9522327. DOI: 10.1073/pnas.2202563119.


Atomically defined angstrom-scale all-carbon junctions.

Tan Z, Zhang D, Tian H, Wu Q, Hou S, Pi J Nat Commun. 2019; 10(1):1748.

PMID: 30988310 PMC: 6465289. DOI: 10.1038/s41467-019-09793-8.

References
1.
Popov A, Dunsch L . Structure, stability, and cluster-cage interactions in nitride clusterfullerenes M3N@C2n (M = Sc, Y; 2n = 68-98): a density functional theory study. J Am Chem Soc. 2007; 129(38):11835-49. DOI: 10.1021/ja073809l. View

2.
Stevenson S, Mackey M, Stuart M, Phillips J, Easterling M, Chancellor C . A distorted tetrahedral metal oxide cluster inside an icosahedral carbon cage. Synthesis, isolation, and structural characterization of Sc4(mu3-O)2@Ih-C80. J Am Chem Soc. 2008; 130(36):11844-5. DOI: 10.1021/ja803679u. View

3.
Zhang J, Bowles F, Bearden D, Ray W, Fuhrer T, Ye Y . A missing link in the transformation from asymmetric to symmetric metallofullerene cages implies a top-down fullerene formation mechanism. Nat Chem. 2013; 5(10):880-5. DOI: 10.1038/nchem.1748. View

4.
Ceron M, Li F, Echegoyen L . An efficient method to separate Sc3N@C80 Ih and D5h isomers and Sc3N@C78 by selective oxidation with acetylferrocenium [Fe(COCH3C5H4)Cp]+. Chemistry. 2013; 19(23):7410-5. DOI: 10.1002/chem.201204219. View

5.
Dunk P, Kaiser N, Mulet-Gas M, Rodriguez-Fortea A, Poblet J, Shinohara H . The smallest stable fullerene, M@C28 (m = Ti, Zr, U): stabilization and growth from carbon vapor. J Am Chem Soc. 2012; 134(22):9380-9. DOI: 10.1021/ja302398h. View