» Articles » PMID: 29076083

Mouse Models of Erythropoiesis and Associated Diseases

Overview
Specialty Molecular Biology
Date 2017 Oct 28
PMID 29076083
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Animal models of erythropoiesis have been, and will continue to be, important tools for understanding molecular mechanisms underlying the development of this cell lineage and the pathophysiology associated with various human erythropoietic diseases. In this regard, the mouse is probably the most valuable animal model available to investigators. The physiology and short gestational period of mice make them ideal for studying developmental processes and modeling human diseases. These attributes, coupled with cutting-edge genetic tools such as transgenesis, gene knockouts, conditional gene knockouts, and genome editing, provide a significant resource to the research community to test a plethora of hypotheses. This review summarizes the mouse models available for studying a wide variety of erythroid-related questions, as well as the properties inherent in each one.

Citing Articles

Cell fate decision in erythropoiesis: Insights from multiomics studies.

Tur S, Palii C, Brand M Exp Hematol. 2024; 131:104167.

PMID: 38262486 PMC: 10939800. DOI: 10.1016/j.exphem.2024.104167.


Embryo-Engineered Nonhuman Primate Models: Progress and Gap to Translational Medicine.

Huang M, Yang J, Li P, Chen Y Research (Wash D C). 2021; 2021:9898769.

PMID: 34549187 PMC: 8404551. DOI: 10.34133/2021/9898769.


Dynamic changes in murine erythropoiesis from birth to adulthood: implications for the study of murine models of anemia.

Chen L, Wang J, Liu J, Wang H, Hillyer C, Blanc L Blood Adv. 2021; 5(1):16-25.

PMID: 33570621 PMC: 7805320. DOI: 10.1182/bloodadvances.2020003632.


Pervasive head-to-tail insertions of DNA templates mask desired CRISPR-Cas9-mediated genome editing events.

Skryabin B, Kummerfeld D, Gubar L, Seeger B, Kaiser H, Stegemann A Sci Adv. 2020; 6(7):eaax2941.

PMID: 32095517 PMC: 7015686. DOI: 10.1126/sciadv.aax2941.


Mouse models in hematopoietic stem cell gene therapy and genome editing.

Radtke S, Humbert O, Kiem H Biochem Pharmacol. 2019; 174:113692.

PMID: 31705854 PMC: 7050335. DOI: 10.1016/j.bcp.2019.113692.


References
1.
Mohan Jr W, Scheer E, Wendling O, Metzger D, Tora L . TAF10 (TAF(II)30) is necessary for TFIID stability and early embryogenesis in mice. Mol Cell Biol. 2003; 23(12):4307-18. PMC: 156135. DOI: 10.1128/MCB.23.12.4307-4318.2003. View

2.
Zhu B, McLaughlin S, Na R, Liu J, Cui Y, Martin C . Hematopoietic-specific Stat5-null mice display microcytic hypochromic anemia associated with reduced transferrin receptor gene expression. Blood. 2008; 112(5):2071-80. PMC: 2518907. DOI: 10.1182/blood-2007-12-127480. View

3.
Papadopoulos P, Gutierrez L, van der Linden R, Kong-A-San J, Maas A, Drabek D . A dual reporter mouse model of the human β-globin locus: applications and limitations. PLoS One. 2012; 7(12):e51272. PMC: 3522686. DOI: 10.1371/journal.pone.0051272. View

4.
Soriano P . Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet. 1999; 21(1):70-1. DOI: 10.1038/5007. View

5.
Trumpp A, Refaeli Y, Oskarsson T, Gasser S, Murphy M, Martin G . c-Myc regulates mammalian body size by controlling cell number but not cell size. Nature. 2001; 414(6865):768-73. DOI: 10.1038/414768a. View