» Articles » PMID: 29062045

Evolution of AF6-RAS Association and Its Implications in Mixed-lineage Leukemia

Abstract

Elucidation of activation mechanisms governing protein fusions is essential for therapeutic development. MLL undergoes rearrangement with numerous partners, including a recurrent translocation fusing the epigenetic regulator to a cytoplasmic RAS effector, AF6/afadin. We show here that AF6 employs a non-canonical, evolutionarily conserved α-helix to bind RAS, unique to AF6 and the classical RASSF effectors. Further, all patients with MLL-AF6 translocations express fusion proteins missing only this helix from AF6, resulting in exposure of hydrophobic residues that induce dimerization. We provide evidence that oligomerization is the dominant mechanism driving oncogenesis from rare MLL translocation partners and employ our mechanistic understanding of MLL-AF6 to examine how dimers induce leukemia. Proteomic data resolve association of dimerized MLL with gene expression modulators, and inhibiting dimerization disrupts formation of these complexes while completely abrogating leukemogenesis in mice. Oncogenic gene translocations are thus selected under pressure from protein structure/function, underscoring the complex nature of chromosomal rearrangements.

Citing Articles

The dual Ras-association domains of Drosophila Canoe have differential roles in linking cell junctions to the cytoskeleton during morphogenesis.

McParland E, Gurley N, Wolfsberg L, Butcher T, Bhattarai A, Jensen C J Cell Sci. 2024; 137(23).

PMID: 39450902 PMC: 11698047. DOI: 10.1242/jcs.263546.


Functional and structural insights into RAS effector proteins.

Mozzarelli A, Simanshu D, Castel P Mol Cell. 2024; 84(15):2807-2821.

PMID: 39025071 PMC: 11316660. DOI: 10.1016/j.molcel.2024.06.027.


Molecular mechanism of Afadin substrate recruitment to the receptor phosphatase PTPRK via its pseudophosphatase domain.

Hay I, Mulholland K, Lai T, Graham S, Sharpe H, Deane J Elife. 2022; 11.

PMID: 36264065 PMC: 9640194. DOI: 10.7554/eLife.79855.


The role of reciprocal fusions in MLL-r acute leukemia: studying the chromosomal translocation t(6;11).

Kundu A, Kowarz E, Marschalek R Oncogene. 2021; 40(40):5902-5912.

PMID: 34354240 PMC: 8497272. DOI: 10.1038/s41388-021-01983-3.


Engineering of Biological Pathways: Complex Formation and Signal Transduction.

Junk P, Kiel C Methods Mol Biol. 2021; 2315:59-70.

PMID: 34302670 DOI: 10.1007/978-1-0716-1468-6_4.


References
1.
Chang P, Hom R, Musselman C, Zhu L, Kuo A, Gozani O . Binding of the MLL PHD3 finger to histone H3K4me3 is required for MLL-dependent gene transcription. J Mol Biol. 2010; 400(2):137-44. PMC: 2886590. DOI: 10.1016/j.jmb.2010.05.005. View

2.
Dixon A, Pendley S, Bruno B, Woessner D, Shimpi A, Cheatham 3rd T . Disruption of Bcr-Abl coiled coil oligomerization by design. J Biol Chem. 2011; 286(31):27751-60. PMC: 3149365. DOI: 10.1074/jbc.M111.264903. View

3.
Milne T, Martin M, Brock H, Slany R, Hess J . Leukemogenic MLL fusion proteins bind across a broad region of the Hox a9 locus, promoting transcription and multiple histone modifications. Cancer Res. 2005; 65(24):11367-74. DOI: 10.1158/0008-5472.CAN-05-1041. View

4.
Meyer C, Burmeister T, Strehl S, Schneider B, Hubert D, Zach O . Spliced MLL fusions: a novel mechanism to generate functional chimeric MLL-MLLT1 transcripts in t(11;19)(q23;p13.3) leukemia. Leukemia. 2007; 21(3):588-90. DOI: 10.1038/sj.leu.2404542. View

5.
Lambert J, Tucholska M, Go C, Knight J, Gingras A . Proximity biotinylation and affinity purification are complementary approaches for the interactome mapping of chromatin-associated protein complexes. J Proteomics. 2014; 118:81-94. PMC: 4383713. DOI: 10.1016/j.jprot.2014.09.011. View