» Articles » PMID: 29051381

Learning-enhanced Coupling Between Ripple Oscillations in Association Cortices and Hippocampus

Overview
Journal Science
Specialty Science
Date 2017 Oct 21
PMID 29051381
Citations 155
Authors
Affiliations
Soon will be listed here.
Abstract

Consolidation of declarative memories requires hippocampal-neocortical communication. Although experimental evidence supports the role of sharp-wave ripples in transferring hippocampal information to the neocortex, the exact cortical destinations and the physiological mechanisms of such transfer are not known. We used a conducting polymer-based conformable microelectrode array (NeuroGrid) to record local field potentials and neural spiking across the dorsal cortical surface of the rat brain, combined with silicon probe recordings in the hippocampus, to identify candidate physiological patterns. Parietal, midline, and prefrontal, but not primary cortical areas, displayed localized ripple (100 to 150 hertz) oscillations during sleep, concurrent with hippocampal ripples. Coupling between hippocampal and neocortical ripples was strengthened during sleep following learning. These findings suggest that ripple-ripple coupling supports hippocampal-association cortical transfer of memory traces.

Citing Articles

Electrophysiological signatures underlying variability in human memory consolidation.

Duan W, Xu Z, Chen D, Wang J, Liu J, Tan Z Nat Commun. 2025; 16(1):2472.

PMID: 40074728 PMC: 11903871. DOI: 10.1038/s41467-025-57766-x.


Differential contributions of CA3 and entorhinal cortex inputs to ripple patterns in the hippocampus.

Aleman-Zapata A, Capitan M, Samanta A, Ozsezer P, Agarwal K, Adam T iScience. 2025; 28(2):111782.

PMID: 39967864 PMC: 11834075. DOI: 10.1016/j.isci.2025.111782.


High-frequency oscillations in epileptic and non-epileptic Alzheimer's disease patients and the differential effect of levetiracetam on the oscillations.

Shandilya M, Addo-Osafo K, Ranasinghe K, Shamas M, Staba R, Nagarajan S Brain Commun. 2025; 7(1):fcaf041.

PMID: 39949405 PMC: 11822293. DOI: 10.1093/braincomms/fcaf041.


Ensemble reactivations during brief rest drive fast learning of sequences.

Griffin S, Khanna P, Choi H, Thiesen K, Novik L, Morecraft R Nature. 2025; 638(8052):1034-1042.

PMID: 39814880 DOI: 10.1038/s41586-024-08414-9.


Spatial control of doping in conducting polymers enables complementary, conformable, implantable internal ion-gated organic electrochemical transistors.

Wisniewski D, Ma L, Rauhala O, Cea C, Zhao Z, Ranschaert A Nat Commun. 2025; 16(1):517.

PMID: 39788930 PMC: 11717955. DOI: 10.1038/s41467-024-55284-w.


References
1.
Gelinas J, Khodagholy D, Thesen T, Devinsky O, Buzsaki G . Interictal epileptiform discharges induce hippocampal-cortical coupling in temporal lobe epilepsy. Nat Med. 2016; 22(6):641-8. PMC: 4899094. DOI: 10.1038/nm.4084. View

2.
Scheffzuk C, Kukushka V, Vyssotski A, Draguhn A, Tort A, Brankack J . Selective coupling between theta phase and neocortical fast gamma oscillations during REM-sleep in mice. PLoS One. 2011; 6(12):e28489. PMC: 3230633. DOI: 10.1371/journal.pone.0028489. View

3.
Wilber A, Skelin I, Wu W, McNaughton B . Laminar Organization of Encoding and Memory Reactivation in the Parietal Cortex. Neuron. 2017; 95(6):1406-1419.e5. PMC: 5679317. DOI: 10.1016/j.neuron.2017.08.033. View

4.
Blanco J, Stead M, Krieger A, Stacey W, Maus D, Marsh E . Data mining neocortical high-frequency oscillations in epilepsy and controls. Brain. 2011; 134(Pt 10):2948-59. PMC: 3187540. DOI: 10.1093/brain/awr212. View

5.
Nitz D . Spaces within spaces: rat parietal cortex neurons register position across three reference frames. Nat Neurosci. 2012; 15(10):1365-7. DOI: 10.1038/nn.3213. View