» Articles » PMID: 29041824

A New Nanoemulsion Formulation Improves Antileishmanial Activity and Reduces Toxicity of Amphotericin B

Abstract

This work aimed to optimise a new nanoemulsion (NE) formulation loaded with Amphotericin B (AmB) and to evaluate its in vivo antileishmanial activity and in vitro haemolytic toxicity. The influence of gradual increases in pressure, using a high-pressure homogeniser, was evaluated. The NE was characterised for droplet size, polydispersity index, zeta potential and encapsulation efficiency (EE). For antileishmanial activity studies, AmB-NE was administered intravenously in mice infected by Leishmania infantum chagasi, which causes Visceral Leishmaniasis (VL). When the NE was submitted to gradual increases in pressure, the PI values and droplet size decreased. The droplet size (∼145 nm) was lower than that obtained in previous studies. The zeta potential was negative and the EE was almost 100%. The haemolytic toxicity, evaluated on human red blood cells, for AmB-loaded NE was lower than that observed for the conventional AmB (C-AmB). C-AmB at 2 mg/kg was very toxic. In contrast, administration of the AmB-loaded NE, at same dose, did not result in any sign of acute toxicity, promoting a significant reduction in parasite burden as compared to the C-AmB. These findings suggest that this new AmB-loaded NE constitutes an attractive alternative for the treatment of VL due to improved efficacy and lower toxicity.

Citing Articles

Zein Nanoparticles-Loaded Flavonoids-Rich Fraction from : Potential Antileishmanial Applications.

Neves M, Jesus C, de Oliveira J, Buna S, Silva L, Fraceto L Pharmaceutics. 2025; 16(12.

PMID: 39771581 PMC: 11678320. DOI: 10.3390/pharmaceutics16121603.


Emetic Tartar-Loaded Liposomes as a New Strategy for Leishmaniasis Treatment.

Coelho L, Souza M, Cassali G, Silva R, Paiva M, Barros A Pharmaceutics. 2023; 15(3).

PMID: 36986765 PMC: 10056186. DOI: 10.3390/pharmaceutics15030904.


Enhancing the Antioxidant, Antibacterial, and Wound Healing Effects of Oil by Microencapsulating It in Chitosan-Sodium Alginate Microspheres.

Sathiyaseelan A, Zhang X, Wang M Nutrients. 2023; 15(6).

PMID: 36986049 PMC: 10051692. DOI: 10.3390/nu15061319.


Limitations of current chemotherapy and future of nanoformulation-based AmB delivery for visceral leishmaniasis-An updated review.

Kumar P, Kumar P, Singh N, Khajuria S, Patel R, Rajana V Front Bioeng Biotechnol. 2023; 10:1016925.

PMID: 36588956 PMC: 9794769. DOI: 10.3389/fbioe.2022.1016925.


Current Applications of Plant-Based Drug Delivery Nano Systems for Leishmaniasis Treatment.

Dos Santos D, Lemos J, Miranda S, Di Filippo L, Duarte J, Ferreira L Pharmaceutics. 2022; 14(11).

PMID: 36365157 PMC: 9695113. DOI: 10.3390/pharmaceutics14112339.