» Articles » PMID: 29038498

Environmental and Behavioral Changes May Influence the Exposure of an Arctic Apex Predator to Pathogens and Contaminants

Overview
Journal Sci Rep
Specialty Science
Date 2017 Oct 18
PMID 29038498
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Recent decline of sea ice habitat has coincided with increased use of land by polar bears (Ursus maritimus) from the southern Beaufort Sea (SB), which may alter the risks of exposure to pathogens and contaminants. We assayed blood samples from SB polar bears to assess prior exposure to the pathogens Brucella spp., Toxoplasma gondii, Coxiella burnetii, Francisella tularensis, and Neospora caninum, estimate concentrations of persistent organic pollutants (POPs), and evaluate risk factors associated with exposure to pathogens and POPs. We found that seroprevalence of Brucella spp. and T. gondii antibodies likely increased through time, and provide the first evidence of exposure of polar bears to C. burnetii, N. caninum, and F. tularensis. Additionally, the odds of exposure to T. gondii were greater for bears that used land than for bears that remained on the sea ice during summer and fall, while mean concentrations of the POP chlordane (ΣCHL) were lower for land-based bears. Changes in polar bear behavior brought about by climate-induced modifications to the Arctic marine ecosystem may increase exposure risk to certain pathogens and alter contaminant exposure pathways.

Citing Articles

Measuring polar bear health using allostatic load.

Teman S, Atwood T, Converse S, Fry T, Laidre K Conserv Physiol. 2025; 13(1):coaf013.

PMID: 40051554 PMC: 11884737. DOI: 10.1093/conphys/coaf013.


Increased pathogen exposure of a marine apex predator over three decades.

Rode K, Van Hemert C, Wilson R, Woodruff S, Pabilonia K, Ballweber L PLoS One. 2024; 19(10):e0310973.

PMID: 39441768 PMC: 11498681. DOI: 10.1371/journal.pone.0310973.


Serum Virome of Southern Beaufort Sea polar bears () during a period of rapid climate change.

Fry T, Owens L, Ketz A, Atwood T, Dunay E, Goldberg T Conserv Physiol. 2024; 11(1):coad054.

PMID: 39070777 PMC: 10375943. DOI: 10.1093/conphys/coad054.


One health in the Arctic - connections and actions.

Berner J, Jore S, Abass K, Rautio A Int J Circumpolar Health. 2024; 83(1):2361544.

PMID: 38870398 PMC: 11177712. DOI: 10.1080/22423982.2024.2361544.


The geographic distribution, and the biotic and abiotic predictors of select zoonotic pathogen detections in Canadian polar bears.

Tschritter C, van Coeverden de Groot P, Branigan M, Dyck M, Sun Z, Jenkins E Sci Rep. 2024; 14(1):12027.

PMID: 38797747 PMC: 11128453. DOI: 10.1038/s41598-024-62800-x.


References
1.
Villa S, Migliorati S, Monti G, Holoubek I, Vighi M . Risk of POP mixtures on the Arctic food chain. Environ Toxicol Chem. 2017; 36(5):1181-1192. DOI: 10.1002/etc.3671. View

2.
Screen J, Simmonds I . The central role of diminishing sea ice in recent Arctic temperature amplification. Nature. 2010; 464(7293):1334-7. DOI: 10.1038/nature09051. View

3.
Wendte J, Gibson A, Grigg M . Population genetics of Toxoplasma gondii: new perspectives from parasite genotypes in wildlife. Vet Parasitol. 2011; 182(1):96-111. PMC: 3430134. DOI: 10.1016/j.vetpar.2011.07.018. View

4.
Stieve E, Beckmen K, Kania S, Widner A, Patton S . Neospora caninum and Toxoplasma gondii antibody prevalence in Alaska wildlife. J Wildl Dis. 2010; 46(2):348-55. DOI: 10.7589/0090-3558-46.2.348. View

5.
Dietz R, Gustavson K, Sonne C, Desforges J, Riget F, Pavlova V . Physiologically-based pharmacokinetic modelling of immune, reproductive and carcinogenic effects from contaminant exposure in polar bears (Ursus maritimus) across the Arctic. Environ Res. 2015; 140:45-55. DOI: 10.1016/j.envres.2015.03.011. View