» Articles » PMID: 29038436

Signatures of a Time-reversal Symmetric Weyl Semimetal with Only Four Weyl Points

Overview
Journal Nat Commun
Specialty Biology
Date 2017 Oct 18
PMID 29038436
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Through intense research on Weyl semimetals during the past few years, we have come to appreciate that typical Weyl semimetals host many Weyl points. Nonetheless, the minimum nonzero number of Weyl points allowed in a time-reversal invariant Weyl semimetal is four. Realizing such a system is of fundamental interest and may simplify transport experiments. Recently, it was predicted that TaIrTe realizes a minimal Weyl semimetal. However, the Weyl points and Fermi arcs live entirely above the Fermi level, making them inaccessible to conventional angle-resolved photoemission spectroscopy (ARPES). Here, we use pump-probe ARPES to directly access the band structure above the Fermi level in TaIrTe. We observe signatures of Weyl points and topological Fermi arcs. Combined with ab initio calculation, our results show that TaIrTe is a Weyl semimetal with the minimum number of four Weyl points. Our work provides a simpler platform for accessing exotic transport phenomena arising in Weyl semimetals.Weyl semimetals are interesting because they are characterized by topological invariants, but specific examples discovered to date tend to have complicated band structures with many Weyl points. Here, the authors show that TaIrTe has only four Weyl points, the minimal number required by time-reversal symmetry.

Citing Articles

Surface spectroscopy and surface-bulk hybridization of Weyl semimetals.

Zhang X, Nagaosa N Proc Natl Acad Sci U S A. 2024; 121(13):e2313488121.

PMID: 38513104 PMC: 10990132. DOI: 10.1073/pnas.2313488121.


Dual quantum spin Hall insulator by density-tuned correlations in TaIrTe.

Tang J, Ding T, Chen H, Gao A, Qian T, Huang Z Nature. 2024; 628(8008):515-521.

PMID: 38509374 DOI: 10.1038/s41586-024-07211-8.


Photonic Weyl semimetals in pseudochiral metamaterials.

Chern R, Chou Y Sci Rep. 2022; 12(1):18847.

PMID: 36344624 PMC: 9640650. DOI: 10.1038/s41598-022-23505-1.


Nonlinear nanoelectrodynamics of a Weyl metal.

Shao Y, Jing R, Chae S, Wang C, Sun Z, Emmanouilidou E Proc Natl Acad Sci U S A. 2021; 118(48).

PMID: 34819380 PMC: 8651240. DOI: 10.1073/pnas.2116366118.


Surface superconductivity in the type II Weyl semimetal TaIrTe.

Xing Y, Shao Z, Ge J, Luo J, Wang J, Zhu Z Natl Sci Rev. 2021; 7(3):579-587.

PMID: 34692077 PMC: 8288950. DOI: 10.1093/nsr/nwz204.


References
1.
Blochl . Projector augmented-wave method. Phys Rev B Condens Matter. 1994; 50(24):17953-17979. DOI: 10.1103/physrevb.50.17953. View

2.
Soluyanov A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X . Type-II Weyl semimetals. Nature. 2015; 527(7579):495-8. DOI: 10.1038/nature15768. View

3.
Perdew , Burke , Ernzerhof . Generalized Gradient Approximation Made Simple. Phys Rev Lett. 1996; 77(18):3865-3868. DOI: 10.1103/PhysRevLett.77.3865. View

4.
Ishida Y, Togashi T, Yamamoto K, Tanaka M, Kiss T, Otsu T . Time-resolved photoemission apparatus achieving sub-20-meV energy resolution and high stability. Rev Sci Instrum. 2015; 85(12):123904. DOI: 10.1063/1.4903788. View

5.
Xu S, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C . TOPOLOGICAL MATTER. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science. 2015; 349(6248):613-7. DOI: 10.1126/science.aaa9297. View