» Articles » PMID: 28989809

Understanding Flavin-Dependent Halogenase Reactivity Via Substrate Activity Profiling

Overview
Journal ACS Catal
Date 2017 Oct 10
PMID 28989809
Citations 38
Authors
Affiliations
Soon will be listed here.
Abstract

The activity of four native FDHs and four engineered FDH variants on 93 low molecular weight arenes was used to generate FDH substrate activity profiles. These profiles provided insights into how substrate class, functional group substitution, electronic activation, and binding impact FDH activity and selectivity. The enzymes studied could halogenate a far greater range of substrates than previously recognized, but significant differences in their substrate specificity and selectivity were observed. Trends between the electronic activation of each site on a substrate and halogenation conversion at that site were established, and these data, combined with docking simulations, suggest that substrate binding can override electronic activation even on compounds differing appreciably from native substrates. These findings provide a useful framework for understanding and exploiting FDH reactivity for organic synthesis.

Citing Articles

Crystallographic and Thermodynamic Evidence of Negative Coupling in the Flavin-Dependent Tryptophan Halogenases AbeH and BorH.

Ashaduzzaman M, Lingkon K, De Silva A, Bellizzi 3rd J ACS Omega. 2025; 10(6):5849-5865.

PMID: 39989782 PMC: 11840605. DOI: 10.1021/acsomega.4c09590.


Identifying and Engineering Flavin Dependent Halogenases for Selective Biocatalysis.

Lewis J Acc Chem Res. 2024; 57(15):2067-2079.

PMID: 39038085 PMC: 11309780. DOI: 10.1021/acs.accounts.4c00172.


Fitness landscape of substrate-adaptive mutations in evolved amino acid-polyamine-organocation transporters.

Karapanagioti F, Atlason U, Slotboom D, Poolman B, Obermaier S Elife. 2024; 13.

PMID: 38916596 PMC: 11198987. DOI: 10.7554/eLife.93971.


Enzymkatalysierte späte Modifizierungen: Besser spät als nie.

Romero E, Jones B, Hogg B, Rue Casamajo A, Hayes M, Flitsch S Angew Chem Weinheim Bergstr Ger. 2024; 133(31):16962-16993.

PMID: 38505660 PMC: 10946893. DOI: 10.1002/ange.202014931.


Descriptor-augmented machine learning for enzyme-chemical interaction predictions.

Han Y, Zhang H, Zeng Z, Liu Z, Lu D, Liu Z Synth Syst Biotechnol. 2024; 9(2):259-268.

PMID: 38450325 PMC: 10915406. DOI: 10.1016/j.synbio.2024.02.006.


References
1.
Cross J, Thompson D, Rai B, Baber J, Fan K, Hu Y . Comparison of several molecular docking programs: pose prediction and virtual screening accuracy. J Chem Inf Model. 2009; 49(6):1455-74. DOI: 10.1021/ci900056c. View

2.
Durak L, Payne J, Lewis J . Late-Stage Diversification of Biologically Active Molecules via Chemoenzymatic C-H Functionalization. ACS Catal. 2016; 6(3):1451-1454. PMC: 4890977. DOI: 10.1021/acscatal.5b02558. View

3.
Heemstra Jr J, Walsh C . Tandem action of the O2- and FADH2-dependent halogenases KtzQ and KtzR produce 6,7-dichlorotryptophan for kutzneride assembly. J Am Chem Soc. 2008; 130(43):14024-5. PMC: 2726796. DOI: 10.1021/ja806467a. View

4.
Matsumura I, Ellington A . In vitro evolution of beta-glucuronidase into a beta-galactosidase proceeds through non-specific intermediates. J Mol Biol. 2000; 305(2):331-9. DOI: 10.1006/jmbi.2000.4259. View

5.
van Pee K, Patallo E . Flavin-dependent halogenases involved in secondary metabolism in bacteria. Appl Microbiol Biotechnol. 2006; 70(6):631-41. DOI: 10.1007/s00253-005-0232-2. View