» Articles » PMID: 28989300

Study of Crystal Formation and Nitric Oxide (NO) Release Mechanism from -Nitroso--acetylpenicillamine (SNAP)-Doped CarboSil Polymer Composites for Potential Antimicrobial Applications

Overview
Journal Compos B Eng
Date 2017 Oct 10
PMID 28989300
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Stable and long-term nitric oxide (NO) releasing polymeric materials have many potential biomedical applications. Herein, we report the real-time observation of the crystallization process of the NO donor, -nitroso--acetylpenicillamine (SNAP), within a thermoplastic silicone-polycarbonate-urethane biomedical polymer, CarboSil 20 80A. It is demonstrated that the NO release rate from this composite material is directly correlated with the surface area that the CarboSil polymer film is exposed to when in contact with aqueous solution. The decomposition of SNAP in solution (e.g. PBS, ethanol, THF, etc.) is a pseudo-first-order reaction proportional to the SNAP concentration. Further, catheters fabricated with this novel NO releasing composite material are shown to exhibit significant effects on preventing biofilm formation on catheter surface by and grown in CDC bioreactor over 14 days, with a 2 and 3 log-unit reduction in number of live bacteria on their surfaces, respectively. Therefore, the SNAP-CarboSil composite is a promising new material to develop antimicrobial catheters, as well as other biomedical devices.

Citing Articles

Recent Advances in Polyurethane for Artificial Vascular Application.

Ji H, Shi X, Yang H Polymers (Basel). 2025; 16(24.

PMID: 39771380 PMC: 11679075. DOI: 10.3390/polym16243528.


Antithrombotic and Antimicrobial Potential of S -Nitroso-1-Adamantanethiol-Impregnated Extracorporeal Circuit.

Lautner-Csorba O, Gorur R, Major T, Wu J, Sheet P, Hill J ASAIO J. 2024; 71(2):177-185.

PMID: 39037705 PMC: 11751132. DOI: 10.1097/MAT.0000000000002276.


Surface Engineering for Endothelium-Mimicking Functions to Combat Infection and Thrombosis in Extracorporeal Life Support Technologies.

Ashcraft M, Garren M, Lautner-Csorba O, Pinon V, Wu Y, Crowley D Adv Healthc Mater. 2024; 13(22):e2400492.

PMID: 38924661 PMC: 11468007. DOI: 10.1002/adhm.202400492.


In vivo assessment of dual-function submicron textured nitric oxide releasing catheters in a 7-day rabbit model.

Wu Y, Xu L, Yeager E, Beita K, Crutchfield N, Wilson S Acta Biomater. 2024; 180:372-382.

PMID: 38614415 PMC: 11146291. DOI: 10.1016/j.actbio.2024.04.009.


Enhanced antibacterial efficacy against antibiotic-resistant bacteria via nitric oxide-releasing ampicillin polymer substrates.

Wu Y, Garren M, Estes Bright L, Maffe P, Brooks M, Brisbois E J Colloid Interface Sci. 2023; 653(Pt B):1763-1774.

PMID: 37832467 PMC: 10593200. DOI: 10.1016/j.jcis.2023.09.188.


References
1.
Bogdan C . Nitric oxide and the immune response. Nat Immunol. 2001; 2(10):907-16. DOI: 10.1038/ni1001-907. View

2.
Coquerel G . Crystallization of molecular systems from solution: phase diagrams, supersaturation and other basic concepts. Chem Soc Rev. 2014; 43(7):2286-300. DOI: 10.1039/c3cs60359h. View

3.
Jen M, Serrano M, van Lith R, Ameer G . Polymer-Based Nitric Oxide Therapies: Recent Insights for Biomedical Applications. Adv Funct Mater. 2014; 22(2):239-260. PMC: 4111277. DOI: 10.1002/adfm.201101707. View

4.
Walters 3rd M, Roe F, Bugnicourt A, Franklin M, Stewart P . Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother. 2002; 47(1):317-23. PMC: 148957. DOI: 10.1128/AAC.47.1.317-323.2003. View

5.
Pronovost P, Goeschel C, Colantuoni E, Watson S, Lubomski L, Berenholtz S . Sustaining reductions in catheter related bloodstream infections in Michigan intensive care units: observational study. BMJ. 2010; 340:c309. PMC: 2816728. DOI: 10.1136/bmj.c309. View