» Articles » PMID: 28974681

Motionless Volumetric Photoacoustic Microscopy with Spatially Invariant Resolution

Overview
Journal Nat Commun
Specialty Biology
Date 2017 Oct 5
PMID 28974681
Citations 37
Authors
Affiliations
Soon will be listed here.
Abstract

Photoacoustic microscopy (PAM) is uniquely positioned for biomedical applications because of its ability to visualize optical absorption contrast in vivo in three dimensions. Here we propose motionless volumetric spatially invariant resolution photoacoustic microscopy (SIR-PAM). To realize motionless volumetric imaging, SIR-PAM combines two-dimensional Fourier-spectrum optical excitation with single-element depth-resolved photoacoustic detection. To achieve spatially invariant lateral resolution, propagation-invariant sinusoidal fringes are generated by a digital micromirror device. Further, SIR-PAM achieves 1.5 times finer lateral resolution than conventional PAM. The superior performance was demonstrated in imaging both inanimate objects and animals in vivo with a resolution-invariant axial range of 1.8 mm, 33 times the depth of field of the conventional PAM counterpart. Our work opens new perspectives for PAM in biomedical sciences.Photoacoustic microscopy allows for label-free 3D in vivo imaging by detecting the acoustic response of a photoexcited material. Here, Yang et. al use a digital-micromirror-device based structured illumination scheme to both improve resolution and greatly increase the depth of field, enabling 3D volumetric imaging.

Citing Articles

Axially multifocal metalens for 3D volumetric photoacoustic imaging of neuromelanin in live brain organoid.

Barulin A, Barulina E, Oh D, Jo Y, Park H, Park S Sci Adv. 2025; 11(3):eadr0654.

PMID: 39813359 PMC: 11734735. DOI: 10.1126/sciadv.adr0654.


High speed innovations in photoacoustic microscopy.

Zhu X, Menozzi L, Cho S, Yao J Npj Imaging. 2024; 2(1):46.

PMID: 39525278 PMC: 11541221. DOI: 10.1038/s44303-024-00052-0.


Sound Out the Deep Clarity: Super-Resolution Photoacoustic Imaging at Depths.

Wang N, Yao J IEEE Trans Ultrason Ferroelectr Freq Control. 2024; 71:1801-1813.

PMID: 39222445 PMC: 11872017. DOI: 10.1109/TUFFC.2024.3451986.


Megahertz multi-parametric ophthalmic OCT system for whole eye imaging.

Hu Y, Feng Y, Long X, Zheng D, Liu G, Lu Y Biomed Opt Express. 2024; 15(5):3000-3017.

PMID: 38855668 PMC: 11161356. DOI: 10.1364/BOE.517757.


Introducing the Special Issue Honoring Lihong V. Wang, Pioneer in Biomedical Optics.

Wang X, Anastasio M, Zhang H, Sakadzic S, Hu S, Gao L J Biomed Opt. 2024; 29(Suppl 1):S11500.

PMID: 38846410 PMC: 11153774. DOI: 10.1117/1.JBO.29.S1.S11500.


References
1.
Keller P, Schmidt A, Santella A, Khairy K, Bao Z, Wittbrodt J . Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy. Nat Methods. 2010; 7(8):637-42. PMC: 4418465. DOI: 10.1038/nmeth.1476. View

2.
Goorden S, Bertolotti J, Mosk A . Superpixel-based spatial amplitude and phase modulation using a digital micromirror device. Opt Express. 2014; 22(15):17999-8009. DOI: 10.1364/OE.22.017999. View

3.
Denk W, Strickler J, Webb W . Two-photon laser scanning fluorescence microscopy. Science. 1990; 248(4951):73-6. DOI: 10.1126/science.2321027. View

4.
Dan D, Lei M, Yao B, Wang W, Winterhalder M, Zumbusch A . DMD-based LED-illumination super-resolution and optical sectioning microscopy. Sci Rep. 2013; 3:1116. PMC: 3552285. DOI: 10.1038/srep01116. View

5.
Yao J, Wang L . Photoacoustic Microscopy. Laser Photon Rev. 2014; 7(5). PMC: 3887369. DOI: 10.1002/lpor.201200060. View