» Articles » PMID: 28973665

Suppression of Leptin Signaling Reduces Polyglucosan Inclusions and Seizure Susceptibility in a Mouse Model for Lafora Disease

Overview
Journal Hum Mol Genet
Date 2017 Oct 4
PMID 28973665
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Lafora disease (LD) represents a fatal form of neurodegenerative disorder characterized by the presence of abnormally large number of polyglucosan bodies-called the Lafora bodies-in neurons and other tissues of the affected patients. The disease is caused by defects in the EPM2A gene coding for a protein phosphatase (laforin) or the NHLRC1 gene coding for an ubiquitin ligase (malin). Studies have shown that inhibition of glycogen synthesis in the brain could prevent the formation of Lafora bodies in the neurons and reduce seizure susceptibility in laforin-deficient mouse, an established animal model for LD. Since increased glucose uptake is thought to underlie increased glycogen in LD, and since the adipocyte hormone leptin is known to positively regulate the glucose uptake in neurons, we reasoned that blocking leptin signaling might reduce the neuronal glucose uptake and ameliorate the LD pathology. We demonstrate here that mice that were deficient for both laforin and leptin receptor showed a reduction in the glycogen level, Lafora bodies and gliosis in the brain, and displayed reduced susceptibility to induced seizures as compared to animals that were deficient only for laforin. Thus, blocking leptin signaling could be a one of the effective therapeutic strategies in LD.

Citing Articles

Neurological glycogen storage diseases and emerging therapeutics.

Colpaert M, Singh P, Donohue K, Pires N, Fuller D, Corti M Neurotherapeutics. 2024; 21(5):e00446.

PMID: 39277505 PMC: 11581880. DOI: 10.1016/j.neurot.2024.e00446.


Polyglucosan body disease in an aged chimpanzee (Pan troglodytes).

Gumber S, Connor-Stroud F, Howard D, Zhang X, Bradley B, Sherwood C Neuropathology. 2023; 43(6):463-471.

PMID: 37086019 PMC: 10642523. DOI: 10.1111/neup.12906.


Glial Contributions to Lafora Disease: A Systematic Review.

Della Vecchia S, Marchese M, Santorelli F Biomedicines. 2022; 10(12).

PMID: 36551859 PMC: 9776290. DOI: 10.3390/biomedicines10123103.


An inducible glycogen synthase-1 knockout halts but does not reverse Lafora disease progression in mice.

Nitschke S, Chown E, Zhao X, Gabrielian S, Petkovic S, Guisso D J Biol Chem. 2020; 296:100150.

PMID: 33277363 PMC: 7857511. DOI: 10.1074/jbc.RA120.015773.


Trehalose Ameliorates Seizure Susceptibility in Lafora Disease Mouse Models by Suppressing Neuroinflammation and Endoplasmic Reticulum Stress.

Sinha P, Verma B, Ganesh S Mol Neurobiol. 2020; 58(3):1088-1101.

PMID: 33094475 DOI: 10.1007/s12035-020-02170-3.