» Articles » PMID: 28972571

Individual-level Trait Diversity Predicts Phytoplankton Community Properties Better Than Species Richness or Evenness

Overview
Journal ISME J
Date 2017 Oct 4
PMID 28972571
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Understanding how microbial diversity influences ecosystem properties is of paramount importance. Cellular traits-which determine responses to the abiotic and biotic environment-may help us rigorously link them. However, our capacity to measure traits in natural communities has thus far been limited. Here we compared the predictive power of trait richness (trait space coverage), evenness (regularity in trait distribution) and divergence (prevalence of extreme phenotypes) derived from individual-based measurements with two species-level metrics (taxonomic richness and evenness) when modelling the productivity of natural phytoplankton communities. Using phytoplankton data obtained from 28 lakes sampled at different spatial and temporal scales, we found that the diversity in individual-level morphophysiological traits strongly improved our ability to predict community resource-use and biomass yield. Trait evenness-the regularity in distribution of individual cells/colonies within the trait space-was the strongest predictor, exhibiting a robust negative relationship across scales. Our study suggests that quantifying individual microbial phenotypes in trait space may help us understand how to link physiology to ecosystem-scale processes. Elucidating the mechanisms scaling individual-level trait variation to microbial community dynamics could there improve our ability to forecast changes in ecosystem properties across environmental gradients.

Citing Articles

Trade-offs between receptor modification and fitness drive host-bacteriophage co-evolution leading to phage extinction or co-existence.

Chen L, Zhao X, Wongso S, Lin Z, Wang S ISME J. 2024; 18(1).

PMID: 39441988 PMC: 11538992. DOI: 10.1093/ismejo/wrae214.


An integrated individual-level trait-based phytoplankton dataset from transitional waters.

Laraib M, Titocci J, Rosati I, Basset A Sci Data. 2023; 10(1):897.

PMID: 38092782 PMC: 10719296. DOI: 10.1038/s41597-023-02785-w.


A species-level trait dataset of bats in Europe and beyond.

Froidevaux J, Toshkova N, Barbaro L, Benitez-Lopez A, Kerbiriou C, Le Viol I Sci Data. 2023; 10(1):253.

PMID: 37137926 PMC: 10156679. DOI: 10.1038/s41597-023-02157-4.


Winners and Losers of Atlantification: The Degree of Ocean Warming Affects the Structure of Arctic Microbial Communities.

Ahme A, von Jackowski A, McPherson R, Wolf K, Hoppmann M, Neuhaus S Genes (Basel). 2023; 14(3).

PMID: 36980894 PMC: 10048660. DOI: 10.3390/genes14030623.


Reproductive trait differences drive offspring production in urban cavity-nesting bees and wasps.

Moretti M, Fontana S, Carscadden K, MacIvor J Ecol Evol. 2021; 11(15):9932-9948.

PMID: 34367550 PMC: 8328425. DOI: 10.1002/ece3.7537.


References
1.
Bila K, Moretti M, Bello F, Dias A, Pezzatti G, Van Oosten A . Disentangling community functional components in a litter-macrodetritivore model system reveals the predominance of the mass ratio hypothesis. Ecol Evol. 2014; 4(4):408-16. PMC: 3936387. DOI: 10.1002/ece3.941. View

2.
Bolnick D, Amarasekare P, Araujo M, Burger R, Levine J, Novak M . Why intraspecific trait variation matters in community ecology. Trends Ecol Evol. 2011; 26(4):183-92. PMC: 3088364. DOI: 10.1016/j.tree.2011.01.009. View

3.
Ptacnik R, Solimini A, Andersen T, Tamminen T, Brettum P, Lepisto L . Diversity predicts stability and resource use efficiency in natural phytoplankton communities. Proc Natl Acad Sci U S A. 2008; 105(13):5134-8. PMC: 2278227. DOI: 10.1073/pnas.0708328105. View

4.
Shade A, Carey C, Kara E, Bertilsson S, McMahon K, Smith M . Can the black box be cracked? The augmentation of microbial ecology by high-resolution, automated sensing technologies. ISME J. 2009; 3(8):881-8. DOI: 10.1038/ismej.2009.56. View

5.
Norberg J, Swaney D, Dushoff J, Lin J, Casagrandi R, Levin S . Phenotypic diversity and ecosystem functioning in changing environments: a theoretical framework. Proc Natl Acad Sci U S A. 2001; 98(20):11376-81. PMC: 58737. DOI: 10.1073/pnas.171315998. View