» Articles » PMID: 28965513

An Evolving View of Retinogeniculate Transmission

Overview
Journal Vis Neurosci
Specialties Neurology
Ophthalmology
Date 2017 Oct 3
PMID 28965513
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

The thalamocortical (TC) relay neuron of the dorsoLateral Geniculate Nucleus (dLGN) has borne its imprecise label for many decades in spite of strong evidence that its role in visual processing transcends the implied simplicity of the term "relay". The retinogeniculate synapse is the site of communication between a retinal ganglion cell and a TC neuron of the dLGN. Activation of retinal fibers in the optic tract causes reliable, rapid, and robust postsynaptic potentials that drive postsynaptics spikes in a TC neuron. Cortical and subcortical modulatory systems have been known for decades to regulate retinogeniculate transmission. The dynamic properties that the retinogeniculate synapse itself exhibits during and after developmental refinement further enrich the role of the dLGN in the transmission of the retinal signal. Here we consider the structural and functional substrates for retinogeniculate synaptic transmission and plasticity, and reflect on how the complexity of the retinogeniculate synapse imparts a novel dynamic and influential capacity to subcortical processing of visual information.

Citing Articles

Input-specific synaptic depression shapes temporal integration in mouse visual cortex.

Li J, Glickfeld L Neuron. 2023; 111(20):3255-3269.e6.

PMID: 37543037 PMC: 10592405. DOI: 10.1016/j.neuron.2023.07.003.


Input-specific synaptic depression shapes temporal integration in mouse visual cortex.

Li J, Glickfeld L bioRxiv. 2023; .

PMID: 36778279 PMC: 9915496. DOI: 10.1101/2023.01.30.526211.


Loss of Retinogeniculate Synaptic Function in the DBA/2J Mouse Model of Glaucoma.

Smith J, Zhang K, Sladek A, Thompson J, Bierlein E, Bhandari A eNeuro. 2022; 9(6).

PMID: 36526366 PMC: 9794376. DOI: 10.1523/ENEURO.0421-22.2022.


Structural and Functional Plasticity in the Dorsolateral Geniculate Nucleus of Mice following Bilateral Enucleation.

Bhandari A, Ward T, Smith J, Van Hook M Neuroscience. 2022; 488:44-59.

PMID: 35131394 PMC: 8960354. DOI: 10.1016/j.neuroscience.2022.01.029.


Development of astrocyte morphology and function in mouse visual thalamus.

Somaiya R, Huebschman N, Chaunsali L, Sabbagh U, Carrillo G, Tewari B J Comp Neurol. 2021; 530(7):945-962.

PMID: 34636034 PMC: 8957486. DOI: 10.1002/cne.25261.


References
1.
Guido W . Refinement of the retinogeniculate pathway. J Physiol. 2008; 586(18):4357-62. PMC: 2614014. DOI: 10.1113/jphysiol.2008.157115. View

2.
Rozov A, Zilberter Y, Wollmuth L, Burnashev N . Facilitation of currents through rat Ca2+-permeable AMPA receptor channels by activity-dependent relief from polyamine block. J Physiol. 1998; 511 ( Pt 2):361-77. PMC: 2231126. DOI: 10.1111/j.1469-7793.1998.361bh.x. View

3.
Jaubert-Miazza L, Green E, Lo F, Bui K, Mills J, Guido W . Structural and functional composition of the developing retinogeniculate pathway in the mouse. Vis Neurosci. 2005; 22(5):661-76. DOI: 10.1017/S0952523805225154. View

4.
Scholl B, Tan A, Corey J, Priebe N . Emergence of orientation selectivity in the Mammalian visual pathway. J Neurosci. 2013; 33(26):10616-24. PMC: 3693051. DOI: 10.1523/JNEUROSCI.0404-13.2013. View

5.
Garraghty P, Sur M . Competitive interactions influencing the development of retinal axonal arbors in cat lateral geniculate nucleus. Physiol Rev. 1993; 73(3):529-45. DOI: 10.1152/physrev.1993.73.3.529. View