» Articles » PMID: 28936337

Emerging Plasmonic Nanostructures for Controlling and Enhancing Photoluminescence

Overview
Journal Chem Sci
Specialty Chemistry
Date 2017 Sep 23
PMID 28936337
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Localised surface plasmon resonance endows plasmonic nanostructures with unique, powerful properties such as photoluminescence enhancement, which is a phenomenon based on the interaction between light and a metal nanostructure. In particular, photoluminescence modulation and enhancement are of importance to many research fields such as photonics, plasmonics and biosensing. In this minireview, we introduce basic principles of plasmonic-nanostructure photoluminescence and recently reported plasmonic nanostructures exhibiting surface-enhanced fluorescence and direct photoluminescence, with one-photon photoluminescence being of particular interest. Gaining insights into these systems not only helps understand the fundamental concepts of plasmonic nanostructures but also advances and extends their applications.

Citing Articles

An overview on plasmon-enhanced photoluminescence via metallic nanoantennas.

Montano-Priede J, Zapata-Herrera M, Esteban R, Zabala N, Aizpurua J Nanophotonics. 2024; 13(26):4771-4794.

PMID: 39640204 PMC: 11614590. DOI: 10.1515/nanoph-2024-0463.


A review of recent advances in the use of complex metal nanostructures for biomedical applications from diagnosis to treatment.

Hajfathalian M, Mossburg K, Radaic A, Woo K, Jonnalagadda P, Kapila Y Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024; 16(3):e1959.

PMID: 38711134 PMC: 11114100. DOI: 10.1002/wnan.1959.


Construction of nanoparticle-on-mirror nanocavities and their applications in plasmon-enhanced spectroscopy.

Peng W, Zhou J, Li M, Sun L, Zhang Y, Li J Chem Sci. 2024; 15(8):2697-2711.

PMID: 38404398 PMC: 10882497. DOI: 10.1039/d3sc05722d.


Plasmonic phenomena in molecular junctions: principles and applications.

Wang M, Wang T, Ojambati O, Duffin T, Kang K, Lee T Nat Rev Chem. 2023; 6(10):681-704.

PMID: 37117494 DOI: 10.1038/s41570-022-00423-4.


Refractive Index Dependence of Fluorescence Enhancement in a Nanostructured Plasmonic Grating.

Angelini M, Manobianco E, Pellacani P, Floris F, Marabelli F Materials (Basel). 2023; 16(3).

PMID: 36770293 PMC: 9920896. DOI: 10.3390/ma16031289.


References
1.
Li J, Krasavin A, Webster L, Segovia P, Zayats A, Richards D . Spectral variation of fluorescence lifetime near single metal nanoparticles. Sci Rep. 2016; 6:21349. PMC: 4753420. DOI: 10.1038/srep21349. View

2.
Nam J, Oh J, Lee H, Suh Y . Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles. Acc Chem Res. 2016; 49(12):2746-2755. DOI: 10.1021/acs.accounts.6b00409. View

3.
Khurgin J . How to deal with the loss in plasmonics and metamaterials. Nat Nanotechnol. 2015; 10(1):2-6. DOI: 10.1038/nnano.2014.310. View

4.
Li Y, Tang J, He L, Liu Y, Liu Y, Chen C . Core-Shell Upconversion Nanoparticle@Metal-Organic Framework Nanoprobes for Luminescent/Magnetic Dual-Mode Targeted Imaging. Adv Mater. 2015; 27(27):4075-80. DOI: 10.1002/adma.201501779. View

5.
Benz F, Schmidt M, Dreismann A, Chikkaraddy R, Zhang Y, Demetriadou A . Single-molecule optomechanics in "picocavities". Science. 2016; 354(6313):726-729. DOI: 10.1126/science.aah5243. View