» Articles » PMID: 28931070

Atrazine Induced Epigenetic Transgenerational Inheritance of Disease, Lean Phenotype and Sperm Epimutation Pathology Biomarkers

Overview
Journal PLoS One
Date 2017 Sep 21
PMID 28931070
Citations 74
Authors
Affiliations
Soon will be listed here.
Abstract

Ancestral environmental exposures to a variety of environmental toxicants and other factors have been shown to promote the epigenetic transgenerational inheritance of adult onset disease. The current study examined the potential transgenerational actions of the herbicide atrazine. Atrazine is one of the most commonly used herbicides in the agricultural industry, in particular with corn and soy crops. Outbred gestating female rats were transiently exposed to a vehicle control or atrazine. The F1 generation offspring were bred to generate the F2 generation and then the F2 generation bred to generate the F3 generation. The F1, F2 and F3 generation control and atrazine lineage rats were aged and various pathologies investigated. The male sperm were collected to investigate DNA methylation differences between the control and atrazine lineage sperm. The F1 generation offspring (directly exposed as a fetus) did not develop disease, but weighed less compared to controls. The F2 generation (grand-offspring) was found to have increased frequency of testis disease and mammary tumors in males and females, early onset puberty in males, and decreased body weight in females compared to controls. The transgenerational F3 generation rats were found to have increased frequency of testis disease, early onset puberty in females, behavioral alterations (motor hyperactivity) and a lean phenotype in males and females. The frequency of multiple diseases was significantly higher in the transgenerational F3 generation atrazine lineage males and females. The transgenerational transmission of disease requires germline (egg or sperm) epigenetic alterations. The sperm differential DNA methylation regions (DMRs), termed epimutations, induced by atrazine were identified in the F1, F2 and F3 generations. Gene associations with the DMRs were identified. For the transgenerational F3 generation sperm, unique sets of DMRs (epimutations) were found to be associated with the lean phenotype or testis disease. These DMRs provide potential biomarkers for transgenerational disease. The etiology of disease appears to be in part due to environmentally induced epigenetic transgenerational inheritance, and epigenetic biomarkers may facilitate the diagnosis of the ancestral exposure and disease susceptibility. Observations indicate that although atrazine does not promote disease in the directly exposed F1 generation, it does have the capacity to promote the epigenetic transgenerational inheritance of disease.

Citing Articles

Genetics, Epigenetics, and the Environment: Are Precision Medicine, Provider Compassion, and Social Justice Effective Public Health Measures to Mitigate Disease Risk and Severity?.

Iannaccone P, Ryznar R, Van Winkle L Int J Environ Res Public Health. 2024; 21(11).

PMID: 39595789 PMC: 11593770. DOI: 10.3390/ijerph21111522.


Epigenetic transgenerational inheritance of toxicant exposure-specific non-coding RNA in sperm.

McSwiggin H, Magalhaes R, Nilsson E, Yan W, Skinner M Environ Epigenet. 2024; 10(1):dvae014.

PMID: 39494159 PMC: 11529619. DOI: 10.1093/eep/dvae014.


Sperm epigenetics and male infertility: unraveling the molecular puzzle.

Hosseini M, Khalafiyan A, Zare M, Karimzadeh H, Bahrami B, Hammami B Hum Genomics. 2024; 18(1):57.

PMID: 38835100 PMC: 11149391. DOI: 10.1186/s40246-024-00626-4.


Characterization of genomic regions escaping epigenetic reprogramming in sheep.

Braz C, Passamonti M, Khatib H Environ Epigenet. 2024; 10(1):dvad010.

PMID: 38496251 PMC: 10944287. DOI: 10.1093/eep/dvad010.


Redox mechanisms of environmental toxicants on male reproductive function.

Hussain T, Metwally E, Murtaza G, Kalhoro D, Chughtai M, Tan B Front Cell Dev Biol. 2024; 12:1333845.

PMID: 38469179 PMC: 10925774. DOI: 10.3389/fcell.2024.1333845.


References
1.
Wolstenholme J, Goldsby J, Rissman E . Transgenerational effects of prenatal bisphenol A on social recognition. Horm Behav. 2013; 64(5):833-9. PMC: 3955720. DOI: 10.1016/j.yhbeh.2013.09.007. View

2.
Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E . Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005; 46(11):2347-55. DOI: 10.1194/jlr.M500294-JLR200. View

3.
Magnusdottir E, Gillich A, Grabole N, Surani M . Combinatorial control of cell fate and reprogramming in the mammalian germline. Curr Opin Genet Dev. 2012; 22(5):466-74. DOI: 10.1016/j.gde.2012.06.002. View

4.
Meredith S, Dudenhoeffer G, Jackson K . Classification of small type B/C follicles as primordial follicles in mature rats. J Reprod Fertil. 2000; 119(1):43-8. DOI: 10.1530/jrf.0.1190043. View

5.
Anway M, Skinner M . Transgenerational effects of the endocrine disruptor vinclozolin on the prostate transcriptome and adult onset disease. Prostate. 2008; 68(5):517-29. PMC: 5940006. DOI: 10.1002/pros.20724. View