» Articles » PMID: 28914256

Mettl3-/Mettl14-mediated MRNA N-methyladenosine Modulates Murine Spermatogenesis

Overview
Journal Cell Res
Specialty Cell Biology
Date 2017 Sep 16
PMID 28914256
Citations 217
Authors
Affiliations
Soon will be listed here.
Abstract

Spermatogenesis is a differentiation process during which diploid spermatogonial stem cells (SSCs) produce haploid spermatozoa. This highly specialized process is precisely controlled at the transcriptional, posttranscriptional, and translational levels. Here we report that N-methyladenosine (mA), an epitranscriptomic mark regulating gene expression, plays essential roles during spermatogenesis. We present comprehensive mA mRNA methylomes of mouse spermatogenic cells from five developmental stages: undifferentiated spermatogonia, type A spermatogonia, preleptotene spermatocytes, pachytene/diplotene spermatocytes, and round spermatids. Germ cell-specific inactivation of the mA RNA methyltransferase Mettl3 or Mettl14 with Vasa-Cre causes loss of mA and depletion of SSCs. mA depletion dysregulates translation of transcripts that are required for SSC proliferation/differentiation. Combined deletion of Mettl3 and Mettl14 in advanced germ cells with Stra8-GFPCre disrupts spermiogenesis, whereas mice with single deletion of either Mettl3 or Mettl14 in advanced germ cells show normal spermatogenesis. The spermatids from double-mutant mice exhibit impaired translation of haploid-specific genes that are essential for spermiogenesis. This study highlights crucial roles of mRNA mA modification in germline development, potentially ensuring coordinated translation at different stages of spermatogenesis.

Citing Articles

Aberrant activation of chromosome asynapsis checkpoint triggers oocyte elimination.

Jiao X, Liang Z, Li J, Bai L, Xu J, Liu Y Nat Commun. 2025; 16(1):2260.

PMID: 40050306 PMC: 11885488. DOI: 10.1038/s41467-025-57702-z.


SETD1B-mediated broad H3K4me3 controls proper temporal patterns of gene expression critical for spermatid development.

Lin Z, Rong B, Lyu R, Zheng Y, Chen Y, Yan J Cell Res. 2025; .

PMID: 40033033 DOI: 10.1038/s41422-025-01080-0.


Control of ciliary transcriptional programs during spermatogenesis by antagonistic transcription factors.

Wang W, Xing J, Zhang X, Liu H, Liu X, Jiang H Elife. 2025; 13.

PMID: 40009443 PMC: 11864758. DOI: 10.7554/eLife.94754.


Exploring m6A modifications in gastric cancer: from molecular mechanisms to clinical applications.

Li P, Fang X, Huang D Eur J Med Res. 2025; 30(1):98.

PMID: 39940056 PMC: 11823136. DOI: 10.1186/s40001-025-02353-5.


Loss of Affects m6A Modification but Not Semen Characteristics in Bull Spermatozoa.

Hai C, Wang L, Wang S, Di A, Song L, Liu X Int J Mol Sci. 2025; 26(2).

PMID: 39859306 PMC: 11766052. DOI: 10.3390/ijms26020591.


References
1.
Wang X, Zhao B, Roundtree I, Lu Z, Han D, Ma H . N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell. 2015; 161(6):1388-99. PMC: 4825696. DOI: 10.1016/j.cell.2015.05.014. View

2.
Gaysinskaya V, Soh I, van der Heijden G, Bortvin A . Optimized flow cytometry isolation of murine spermatocytes. Cytometry A. 2014; 85(6):556-65. PMC: 4246648. DOI: 10.1002/cyto.a.22463. View

3.
Anders S, Pyl P, Huber W . HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2014; 31(2):166-9. PMC: 4287950. DOI: 10.1093/bioinformatics/btu638. View

4.
Buaas F, Kirsh A, Sharma M, McLean D, Morris J, Griswold M . Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet. 2004; 36(6):647-52. DOI: 10.1038/ng1366. View

5.
Ingolia N, Ghaemmaghami S, Newman J, Weissman J . Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science. 2009; 324(5924):218-23. PMC: 2746483. DOI: 10.1126/science.1168978. View