» Articles » PMID: 28887051

Precision Oncology: The Road Ahead

Overview
Journal Trends Mol Med
Date 2017 Sep 10
PMID 28887051
Citations 77
Authors
Affiliations
Soon will be listed here.
Abstract

Current efforts in precision oncology largely focus on the benefit of genomics-guided therapy. Yet, advances in sequencing techniques provide an unprecedented view of the complex genetic and nongenetic heterogeneity within individual tumors. Herein, we outline the benefits of integrating genomic and transcriptomic analyses for advanced precision oncology. We summarize relevant computational approaches to detect novel drivers and genetic vulnerabilities, suitable for therapeutic exploration. Clinically relevant platforms to functionally test predicted drugs/drug combinations for individual patients are reviewed. Finally, we highlight the technological advances in single cell analysis of tumor specimens. These may ultimately lead to the development of next-generation cancer drugs, capable of tackling the hurdles imposed by genetic and phenotypic heterogeneity on current anticancer therapies.

Citing Articles

Computational frameworks transform antagonism to synergy in optimizing combination therapies.

Chen J, Lin A, Jiang A, Qi C, Liu Z, Cheng Q NPJ Digit Med. 2025; 8(1):44.

PMID: 39828791 PMC: 11743742. DOI: 10.1038/s41746-025-01435-2.


From Images to Genes: Radiogenomics Based on Artificial Intelligence to Achieve Non-Invasive Precision Medicine in Cancer Patients.

Guo Y, Li T, Gong B, Hu Y, Wang S, Yang L Adv Sci (Weinh). 2024; 12(2):e2408069.

PMID: 39535476 PMC: 11727298. DOI: 10.1002/advs.202408069.


Molecular and modular intricacies of precision oncology.

Chhabra R Front Immunol. 2024; 15:1476494.

PMID: 39507541 PMC: 11537923. DOI: 10.3389/fimmu.2024.1476494.


The expression patterns of different cell types and their interactions in the tumor microenvironment are predictive of breast cancer patient response to neoadjuvant chemotherapy.

Dhruba S, Sahni S, Wang B, Wu D, Rajagopal P, Schmidt Y bioRxiv. 2024; .

PMID: 39372749 PMC: 11451622. DOI: 10.1101/2024.06.14.598770.


Examining external control arms in oncology: A scoping review of applications to date.

Farah E, Kenney M, Warkentin M, Cheung W, Brenner D Cancer Med. 2024; 13(13):e7447.

PMID: 38984669 PMC: 11234289. DOI: 10.1002/cam4.7447.


References
1.
Robinson D, Van Allen E, Wu Y, Schultz N, Lonigro R, Mosquera J . Integrative clinical genomics of advanced prostate cancer. Cell. 2015; 161(5):1215-1228. PMC: 4484602. DOI: 10.1016/j.cell.2015.05.001. View

2.
Szczurek E, Misra N, Vingron M . Synthetic sickness or lethality points at candidate combination therapy targets in glioblastoma. Int J Cancer. 2013; 133(9):2123-32. DOI: 10.1002/ijc.28235. View

3.
Huang F, Hodis E, Xu M, Kryukov G, Chin L, Garraway L . Highly recurrent TERT promoter mutations in human melanoma. Science. 2013; 339(6122):957-9. PMC: 4423787. DOI: 10.1126/science.1229259. View

4.
Lawrence M, Stojanov P, Polak P, Kryukov G, Cibulskis K, Sivachenko A . Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013; 499(7457):214-218. PMC: 3919509. DOI: 10.1038/nature12213. View

5.
van Leeuwen J, Pons C, Mellor J, Yamaguchi T, Friesen H, Koschwanez J . Exploring genetic suppression interactions on a global scale. Science. 2016; 354(6312). PMC: 5562937. DOI: 10.1126/science.aag0839. View