» Articles » PMID: 28882786

Exosomal Biomarkers in Down Syndrome and Alzheimer's Disease

Overview
Date 2017 Sep 9
PMID 28882786
Citations 46
Authors
Affiliations
Soon will be listed here.
Abstract

Every person with Down syndrome (DS) has the characteristic features of Alzheimer's disease (AD) neuropathology in their brain by the age of forty, and most go on to develop AD dementia. Since people with DS show highly variable levels of baseline function, it is often difficult to identify early signs of dementia in this population. The discovery of blood biomarkers predictive of dementia onset and/or progression in DS is critical for developing effective clinical diagnostics. Our recent studies show that neuron-derived exosomes, which are small extracellular vesicles secreted by most cells in the body, contain elevated levels of amyloid-beta peptides and phosphorylated-Tau that could indicate a preclinical AD phase in people with DS starting in childhood. We also found that the relative levels of these biomarkers were altered following dementia onset. Exosome release and signaling are dependent on cellular redox homeostasis as well as on inflammatory processes, and exosomes may be involved in the immune response, suggesting a dual role as both triggers of inflammation in the brain and propagators of inflammatory signals between brain regions. Based on recently reported connections between inflammatory processes and exosome release, the elevated neuroinflammatory state observed in people with DS may affect exosomal AD biomarkers. Herein, we discuss findings from studies of people with DS, people with DS and AD (DS-AD), and mouse models of DS showing new connections between neuroinflammatory pathways, oxidative stress, exosomes, and exosome-mediated signaling, which may inform future AD diagnostics, preventions, and treatments in the DS population as well as in the general population.

Citing Articles

Exosomes: new targets for understanding axon guidance in the developing central nervous system.

Liu M, Teng T Front Cell Dev Biol. 2025; 12():1510862.

PMID: 39850798 PMC: 11754257. DOI: 10.3389/fcell.2024.1510862.


Imagine, Discover, Inspire: Proceedings of the 4th International Conference of the Trisomy 21 Research Society.

Flores-Aguilar L, Hamlett E, Araya P, Barone E, Bhattacharyya A, Carmona-Iragui M Neuromolecular Med. 2025; 27(1):5.

PMID: 39756004 PMC: 11700910. DOI: 10.1007/s12017-024-08824-y.


Progress on early diagnosing Alzheimer's disease.

Chen Y, Al-Nusaif M, Li S, Tan X, Yang H, Cai H Front Med. 2024; 18(3):446-464.

PMID: 38769282 PMC: 11391414. DOI: 10.1007/s11684-023-1047-1.


The Role of Tau Pathology in Alzheimer's Disease and Down Syndrome.

Granholm A, Hamlett E J Clin Med. 2024; 13(5).

PMID: 38592182 PMC: 10932364. DOI: 10.3390/jcm13051338.


Mesenchymal Stem Cell-Derived Exosomes: A Novel Approach to Diabetes-Associated Cognitive Impairment.

Ran Q, Tian H, Lin J, Wang H, Wang B, Chen Z J Inflamm Res. 2023; 16:4213-4228.

PMID: 37753267 PMC: 10519429. DOI: 10.2147/JIR.S429532.


References
1.
Jim H, Boyd T, Booth-Jones M, Pidala J, Potter H . Granulocyte Macrophage Colony Stimulating Factor Treatment is Associated with Improved Cognition in Cancer Patients. Brain Disord Ther. 2012; 1(1). PMC: 3422132. DOI: 10.4172/bdt.1000101. View

2.
Qu Y, Zhang Q, Cai X, Li F, Ma Z, Xu M . Exosomes derived from miR-181-5p-modified adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation. J Cell Mol Med. 2017; 21(10):2491-2502. PMC: 5618698. DOI: 10.1111/jcmm.13170. View

3.
Heneka M, Carson M, El Khoury J, Landreth G, Brosseron F, Feinstein D . Neuroinflammation in Alzheimer's disease. Lancet Neurol. 2015; 14(4):388-405. PMC: 5909703. DOI: 10.1016/S1474-4422(15)70016-5. View

4.
Maroun L . Anti-interferon immunoglobulins can improve the trisomy 16 mouse phenotype. Teratology. 1995; 51(5):329-35. DOI: 10.1002/tera.1420510509. View

5.
Booth A, Fang Y, Fallon J, Yang J, Hildreth J, Gould S . Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J Cell Biol. 2006; 172(6):923-35. PMC: 2063735. DOI: 10.1083/jcb.200508014. View