» Articles » PMID: 28881280

A Computational Study of the Fontan Circulation with Fenestration or Hepatic Vein Exclusion

Overview
Journal Comput Biol Med
Publisher Elsevier
Date 2017 Sep 8
PMID 28881280
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Fontan patients may undergo additional surgical modifications to mitigate complications like protein-losing enteropathy, liver cirrhosis, and other issues in their splanchnic circulation. Recent case reports show promise for several types of modifications, but the subtle effects of these surgeries on the circulation are not well understood. In this paper, we employ mathematical modeling of blood flow to systematically quantify the impact of these surgical changes on extracardiac Fontan hemodynamics. We investigate two modifications: (1) the fenestrated Fontan and (2) the Fontan with hepatic vein exclusion. Closed-loop hemodynamic models are used, which consist of one-dimensional networks for the major vessels and zero-dimensional models for the heart and organ beds. Numerical results suggest the hepatic vein exclusion has the greatest overall impact on the hemodynamics, followed by the largest sized fenestration. In particular, the hepatic vein exclusion drastically lowers portal venous pressure while the fenestration decreases pulmonary artery pressure. Both modifications increase flow to the intestines, a finding consistent with their utility in clinical practice for combating complications in the splanchnic circulation.

Citing Articles

Parameter selection and optimization of a computational network model of blood flow in single-ventricle patients.

Taylor-LaPole A, Paun L, Lior D, Weigand J, Puelz C, Olufsen M J R Soc Interface. 2025; 22(223):20240663.

PMID: 40013336 PMC: 11865955. DOI: 10.1098/rsif.2024.0663.


Impact of cardiovascular magnetic resonance in single ventricle physiology: a narrative review.

Voges I, Gabbert D, Panakova D, Krupickova S Cardiovasc Diagn Ther. 2025; 14(6):1161-1175.

PMID: 39790200 PMC: 11707479. DOI: 10.21037/cdt-24-409.


Patient-specific closed-loop model of the fontan circulation: Calibration and validation.

Aramburu J, Ruijsink B, Chabiniok R, Pushparajah K, Alastruey J Heliyon. 2024; 10(9):e30404.

PMID: 38742066 PMC: 11089314. DOI: 10.1016/j.heliyon.2024.e30404.


The pendulum of Fontan fenestration.

Corno A, Koerner T, Salazar J Transl Pediatr. 2023; 12(1):104-107.

PMID: 36798929 PMC: 9926132. DOI: 10.21037/tp-22-562.


A computational study of aortic reconstruction in single ventricle patients.

Taylor-LaPole A, Colebank M, Weigand J, Olufsen M, Puelz C Biomech Model Mechanobiol. 2022; 22(1):357-377.

PMID: 36335184 PMC: 10174275. DOI: 10.1007/s10237-022-01650-w.


References
1.
Rychik J, Rome J, Jacobs M . Late surgical fenestration for complications after the Fontan operation. Circulation. 1997; 96(1):33-6. DOI: 10.1161/01.cir.96.1.33. View

2.
Qian Y, Liu J, Itatani K, Miyaji K, Umezu M . Computational hemodynamic analysis in congenital heart disease: simulation of the Norwood procedure. Ann Biomed Eng. 2010; 38(7):2302-13. DOI: 10.1007/s10439-010-9978-5. View

3.
Singhi A, Kothandum S . Unusual method of creation of a transcatheter fenestration in an extracardiac conduit Fontan circulation. Ann Pediatr Cardiol. 2016; 9(3):258-62. PMC: 5007938. DOI: 10.4103/0974-2069.189112. View

4.
Rychik J . Protein-losing enteropathy after Fontan operation. Congenit Heart Dis. 2008; 2(5):288-300. DOI: 10.1111/j.1747-0803.2007.00116.x. View

5.
Marsden A, Vignon-Clementel I, Chan F, Feinstein J, Taylor C . Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection. Ann Biomed Eng. 2006; 35(2):250-63. DOI: 10.1007/s10439-006-9224-3. View