» Articles » PMID: 28878154

Effects of Various Surfactants on the Dispersion of MWCNTs-OH in Aqueous Solution

Overview
Date 2017 Sep 8
PMID 28878154
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Dispersion of carbon nanotubes (CNTs) is a challenge for their application in the resulting matrixes. The present study conducted a comparison investigation of the effect of four surfactants: Alkylphenol polyoxyethylene ether (APEO), Silane modified polycarboxylate (Silane-PCE), I-Cationic polycarboxylate (I-C-PCE), and II-Cationic polycarboxylate (II-C-PCE) on the dispersion of hydroxyl functionalized multi-walled carbon nanotubes (MWCNTs-OH). Among the four surfactants, APEO and II-C-PCE provide the best and the worst dispersion effect of CNTs in water, respectively. Dispersion effect of MWCNTs-OH has been characterized by optical microscope (OM), field emission-scanning electron microscope (FE-SEM), and Ultraviolet-visible spectroscopy (UV-Vis).The OM images are well consistent with the UV-Vis results. Based on the chemical molecular structures of the four surfactants, the mechanism of MWCNTs-OH dispersion in water was investigated. For each kind of surfactant, an optimum surfactant/MWCNTs-OH ratio has been determined. This ratio showed a significant influence on the dispersion of MWCNTs-OH. Surfactant concentration higher or lower than this value can weaken the dispersion quality of MWCNTs-OH.

Citing Articles

Smart Cementitious Sensors with Nano-, Micro-, and Hybrid-Modified Reinforcement: Mechanical and Electrical Properties.

Thomoglou A, Falara M, Gkountakou F, Elenas A, Chalioris C Sensors (Basel). 2023; 23(5).

PMID: 36904609 PMC: 10006917. DOI: 10.3390/s23052405.


The Use of Electrochemical Impedance Spectroscopy as a Tool for the In-Situ Monitoring and Characterization of Carbon Nanotube Aqueous Dispersions.

Gkaravela A, Vareli I, Bekas D, Barkoula N, Paipetis A Nanomaterials (Basel). 2022; 12(24).

PMID: 36558280 PMC: 9786001. DOI: 10.3390/nano12244427.


Functionalized carbon nanotubes: synthesis, properties and applications in water purification, drug delivery, and material and biomedical sciences.

Dubey R, Dutta D, Sarkar A, Chattopadhyay P Nanoscale Adv. 2022; 3(20):5722-5744.

PMID: 36132675 PMC: 9419119. DOI: 10.1039/d1na00293g.


Polymer wrapping-induced dispersion of single walled carbon nanotubes in ethylene glycol under mild sonication.

Kim D, Lee T, Kwon M, Paik H, Hun Han J, Kang M RSC Adv. 2022; 10(44):26262-26267.

PMID: 35519752 PMC: 9055412. DOI: 10.1039/d0ra04061d.


Doping of carbon nanotubes by halogenated solvents.

Taborowska P, Stando G, Sahlman M, Krzywiecki M, Lundstrom M, Janas D Sci Rep. 2022; 12(1):7004.

PMID: 35487941 PMC: 9054843. DOI: 10.1038/s41598-022-11162-3.


References
1.
Dresselhaus M, Dresselhaus G, Charlier J, Hernandez E . Electronic, thermal and mechanical properties of carbon nanotubes. Philos Trans A Math Phys Eng Sci. 2004; 362(1823):2065-98. DOI: 10.1098/rsta.2004.1430. View

2.
Tang X, Bansaruntip S, Nakayama N, Yenilmez E, Chang Y, Wang Q . Carbon nanotube DNA sensor and sensing mechanism. Nano Lett. 2006; 6(8):1632-6. DOI: 10.1021/nl060613v. View

3.
Kim U, Furtado C, Liu X, Chen G, Eklund P . Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes. J Am Chem Soc. 2005; 127(44):15437-45. DOI: 10.1021/ja052951o. View

4.
Tan Y, Resasco D . Dispersion of single-walled carbon nanotubes of narrow diameter distribution. J Phys Chem B. 2006; 109(30):14454-60. DOI: 10.1021/jp052217r. View

5.
Vaisman L, Wagner H, Marom G . The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci. 2007; 128-130:37-46. DOI: 10.1016/j.cis.2006.11.007. View