» Articles » PMID: 28851604

Regulatory Logic Underlying Diversification of the Neural Crest

Overview
Journal Trends Genet
Specialty Genetics
Date 2017 Aug 31
PMID 28851604
Citations 98
Authors
Affiliations
Soon will be listed here.
Abstract

The neural crest is a transient, multipotent population of cells that arises at the border of the developing nervous system. After closure of the neural tube, these cells undergo an epithelial-to-mesenchymal transition (EMT) to delaminate and migrate, often to distant locations in the embryo. Neural crest cells give rise to a diverse array of derivatives including neurons and glia of the peripheral nervous system, melanocytes, and bone and cartilage of the face. A gene regulatory network (GRN) controls the specification, delamination, migration, and differentiation of this fascinating cell type. With increasing technological advances, direct linkages within the neural crest GRN are being uncovered. The underlying circuitry is useful for understanding important topics such as reprogramming, evolution, and disease.

Citing Articles

The effect of chemotherapeutic agents on epidermal neural crest stem cells.

Rahmani-Kukia N, Keshavarzi F, Salehi M, Bozorg-Ghalati F, Mojtahedi Z, Zamani M Mol Biol Res Commun. 2025; 14(2):167-175.

PMID: 40028474 PMC: 11865930. DOI: 10.22099/mbrc.2024.49755.1948.


Early spinal cord development: from neural tube formation to neurogenesis.

Saade M, Marti E Nat Rev Neurosci. 2025; .

PMID: 39915695 DOI: 10.1038/s41583-025-00906-5.


Reactivation of an Embryonic Cardiac Neural Crest Transcriptional Subcircuit During Zebrafish Heart Regeneration.

Dhillon-Richardson R, Haugan A, Lyons L, McKenna J, Bronner M, Martik M bioRxiv. 2025; .

PMID: 39868190 PMC: 11760256. DOI: 10.1101/2025.01.16.633462.


Polarity and migration of cranial and cardiac neural crest cells: underlying molecular mechanisms and disease implications.

Salinas E, Ruano-Rivadeneira F, Leal J, Caprile T, Torrejon M, Arriagada C Front Cell Dev Biol. 2025; 12():1457506.

PMID: 39834387 PMC: 11743681. DOI: 10.3389/fcell.2024.1457506.


Sox10 is required for systemic initiation of bone mineralization.

Gjorcheska S, Paudel S, McLeod S, Paulding D, Snape L, Sosa K Development. 2025; 152(2).

PMID: 39791977 PMC: 11833171. DOI: 10.1242/dev.204357.


References
1.
Milet C, Maczkowiak F, Roche D, Monsoro-Burq A . Pax3 and Zic1 drive induction and differentiation of multipotent, migratory, and functional neural crest in Xenopus embryos. Proc Natl Acad Sci U S A. 2013; 110(14):5528-33. PMC: 3619367. DOI: 10.1073/pnas.1219124110. View

2.
Jacob C, Christen C, Pereira J, Somandin C, Baggiolini A, Lotscher P . HDAC1 and HDAC2 control the transcriptional program of myelination and the survival of Schwann cells. Nat Neurosci. 2011; 14(4):429-36. DOI: 10.1038/nn.2762. View

3.
Mort R, Jackson I, Patton E . The melanocyte lineage in development and disease. Development. 2015; 142(4):620-32. PMC: 4325379. DOI: 10.1242/dev.106567. View

4.
Nagashimada M, Ohta H, Li C, Nakao K, Uesaka T, Brunet J . Autonomic neurocristopathy-associated mutations in PHOX2B dysregulate Sox10 expression. J Clin Invest. 2012; 122(9):3145-58. PMC: 3428093. DOI: 10.1172/JCI63401. View

5.
Morikawa Y, Zehir A, Maska E, Deng C, Schneider M, Mishina Y . BMP signaling regulates sympathetic nervous system development through Smad4-dependent and -independent pathways. Development. 2009; 136(21):3575-84. PMC: 2761108. DOI: 10.1242/dev.038133. View