Shen L, Cai Y, Gao J
Eco Environ Health. 2025; 4(1):100134.
PMID: 40040783
PMC: 11879671.
DOI: 10.1016/j.eehl.2025.100134.
Sanchez-Castro I, Molina L, Prieto-Fernandez M, Segura A
Heliyon. 2023; 9(6):e16692.
PMID: 37484356
PMC: 10360604.
DOI: 10.1016/j.heliyon.2023.e16692.
Hassan Afandy H, Sabir D, Aziz S
Nanomaterials (Basel). 2023; 13(8).
PMID: 37110913
PMC: 10141010.
DOI: 10.3390/nano13081327.
Khan I, Qi S, Gul F, Manan S, Rono J, Naz M
Plants (Basel). 2023; 12(4).
PMID: 36840073
PMC: 9964337.
DOI: 10.3390/plants12040725.
Vu K, Mulligan C
Int J Mol Sci. 2023; 24(3).
PMID: 36768251
PMC: 9915329.
DOI: 10.3390/ijms24031916.
MoS intercalated NiFeTi LDH as an efficient and selective adsorbent for elimination of heavy metals.
Rathee G, Kohli S, Awasthi A, Singh N, Chandra R
RSC Adv. 2022; 10(33):19371-19381.
PMID: 35515471
PMC: 9054091.
DOI: 10.1039/d0ra02766a.
Tolerance mechanism of to Pb: response changes of related active ingredients under Pb stress.
Sun H, Wu L, Hao Y, Liu C, Pan L, Zhu Z
RSC Adv. 2022; 10(9):5202-5211.
PMID: 35498294
PMC: 9049547.
DOI: 10.1039/c9ra10517d.
Cadmium Stabilization and Redox Transformation Mechanism in Maize Using Nanoscale Zerovalent-Iron-Enriched Biochar in Cadmium-Contaminated Soil.
Razzaq S, Zhou B, Zia-Ur-Rehman M, Maqsood M, Hussain S, Bakhsh G
Plants (Basel). 2022; 11(8).
PMID: 35448802
PMC: 9024939.
DOI: 10.3390/plants11081074.
Recent Developments in Microbe-Plant-Based Bioremediation for Tackling Heavy Metal-Polluted Soils.
Saha L, Tiwari J, Bauddh K, Ma Y
Front Microbiol. 2022; 12:731723.
PMID: 35002995
PMC: 8733405.
DOI: 10.3389/fmicb.2021.731723.
Effect of Chelant-Based Soil Washing and Post-Treatment on Pb, Cd, and Zn Bioavailability and Plant Uptake.
Noller C, Friesl-Hanl W, Hood-Nowotny R, Puschenreiter M, Watzinger A
Water Air Soil Pollut. 2021; 232(10):405.
PMID: 34789952
PMC: 8550514.
DOI: 10.1007/s11270-021-05356-0.
Metabolomics reveals the mechanism of Antarctic yeast Rhodotorula mucliaginosa AN5 to cope with cadmium stress.
Zhang C, Shi C, Zhang H, Yu K, Wang Y, Jiang J
Biometals. 2021; 35(1):53-65.
PMID: 34731410
DOI: 10.1007/s10534-021-00350-9.
Nanoscale Zero-Valent Iron Modified by Bentonite with Enhanced Cr(VI) Removal Efficiency, Improved Mobility, and Reduced Toxicity.
Ye J, Luo Y, Sun J, Shi J
Nanomaterials (Basel). 2021; 11(10).
PMID: 34685019
PMC: 8537176.
DOI: 10.3390/nano11102580.
Remediation of Cd-Contaminated Soil by Modified Nanoscale Zero-Valent Iron: Role of Plant Root Exudates and Inner Mechanisms.
Huang D, Yang Y, Deng R, Gong X, Zhou W, Chen S
Int J Environ Res Public Health. 2021; 18(11).
PMID: 34070880
PMC: 8197846.
DOI: 10.3390/ijerph18115887.
Nano Zero Valent Iron (nZVI) as an Amendment for Phytostabilization of Highly Multi-PTE Contaminated Soil.
Radziemska M, Gusiatin Z, Holatko J, Hammerschmiedt T, Gluchowski A, Mizerski A
Materials (Basel). 2021; 14(10).
PMID: 34069264
PMC: 8156641.
DOI: 10.3390/ma14102559.
Contribution of Nano-Zero-Valent Iron and Arbuscular Mycorrhizal Fungi to Phytoremediation of Heavy Metal-Contaminated Soil.
Cheng P, Zhang S, Wang Q, Feng X, Zhang S, Sun Y
Nanomaterials (Basel). 2021; 11(5).
PMID: 34065026
PMC: 8151622.
DOI: 10.3390/nano11051264.
Integrative Transcriptome and Proteome Analysis Identifies Major Molecular Regulation Pathways Involved in Ramie ( (L.) Gaudich) under Nitrogen and Water Co-Limitation.
Chen J, Gao G, Chen P, Chen K, Wang X, Bai L
Plants (Basel). 2020; 9(10).
PMID: 32992865
PMC: 7650756.
DOI: 10.3390/plants9101267.
Ag as Cocatalyst and Electron-Hole Medium in CeO QDs/Ag/AgSe Z-scheme Heterojunction Enhanced the Photo-Electrocatalytic Properties of the Photoelectrode.
Li L, Feng H, Wei X, Jiang K, Xue S, Chu P
Nanomaterials (Basel). 2020; 10(2).
PMID: 32023932
PMC: 7075152.
DOI: 10.3390/nano10020253.
Magnesium oxide nanoparticles and thidiazuron enhance lead phytoaccumulation and antioxidative response in Raphanus sativus L.
Hussain F, Hadi F, Akbar F
Environ Sci Pollut Res Int. 2019; 26(29):30333-30347.
PMID: 31435910
DOI: 10.1007/s11356-019-06206-7.
Ecological risk analysis of the solid residues collected from the thermal disposal process of hyperaccumulator Pteris vittata including heavy metals and environmentally persistent free radicals.
Sun C, Ding D, Chen T, Huang Q, Lu S, Yan J
Environ Sci Pollut Res Int. 2019; 26(28):29234-29245.
PMID: 31396866
DOI: 10.1007/s11356-019-06115-9.
The impact of nanoparticles zero-valent iron (nZVI) and rhizosphere microorganisms on the phytoremediation ability of white willow and its response.
Mokarram-Kashtiban S, Hosseini S, Kouchaksaraei M, Younesi H
Environ Sci Pollut Res Int. 2019; 26(11):10776-10789.
PMID: 30778927
DOI: 10.1007/s11356-019-04411-y.