» Articles » PMID: 28840365

Radiology and Enterprise Medical Imaging Extensions (REMIX)

Overview
Journal J Digit Imaging
Publisher Springer
Date 2017 Aug 26
PMID 28840365
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Radiology and Enterprise Medical Imaging Extensions (REMIX) is a platform originally designed to both support the medical imaging-driven clinical and clinical research operational needs of Department of Radiology of The Ohio State University Wexner Medical Center. REMIX accommodates the storage and handling of "big imaging data," as needed for large multi-disciplinary cancer-focused programs. The evolving REMIX platform contains an array of integrated tools/software packages for the following: (1) server and storage management; (2) image reconstruction; (3) digital pathology; (4) de-identification; (5) business intelligence; (6) texture analysis; and (7) artificial intelligence. These capabilities, along with documentation and guidance, explaining how to interact with a commercial system (e.g., PACS, EHR, commercial database) that currently exists in clinical environments, are to be made freely available.

Citing Articles

Temporal Relationship-Aware Treadmill Exercise Test Analysis Network for Coronary Artery Disease Diagnosis.

Wei J, Pan B, Gan Y, Li X, Liu D, Sang B Sensors (Basel). 2024; 24(9).

PMID: 38732812 PMC: 11085865. DOI: 10.3390/s24092705.


Report of the Medical Image De-Identification (MIDI) Task Group - Best Practices and Recommendations.

Clunie D, Flanders A, Taylor A, Erickson B, Bialecki B, Brundage D ArXiv. 2023; .

PMID: 37033463 PMC: 10081345.


Optimizing Primary Healthcare in Hong Kong: Strategies for the Successful Integration of Radiology Services.

Chow C, Shum J, Hui K, Lin A, Chu E Cureus. 2023; 15(4):e37022.

PMID: 37016673 PMC: 10066850. DOI: 10.7759/cureus.37022.


Interventional Radiology ex-machina: impact of Artificial Intelligence on practice.

Gurgitano M, Angileri S, Roda G, Liguori A, Pandolfi M, Ierardi A Radiol Med. 2021; 126(7):998-1006.

PMID: 33861421 PMC: 8050998. DOI: 10.1007/s11547-021-01351-x.


Myths and facts about artificial intelligence: why machine- and deep-learning will not replace interventional radiologists.

Pesapane F, Tantrige P, Patella F, Biondetti P, Nicosia L, Ianniello A Med Oncol. 2020; 37(5):40.

PMID: 32246300 DOI: 10.1007/s12032-020-01368-8.

References
1.
Ma D, Gulani V, Seiberlich N, Liu K, Sunshine J, Duerk J . Magnetic resonance fingerprinting. Nature. 2013; 495(7440):187-92. PMC: 3602925. DOI: 10.1038/nature11971. View

2.
Therasse P, Arbuck S, Eisenhauer E, Wanders J, Kaplan R, Rubinstein L . New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000; 92(3):205-16. DOI: 10.1093/jnci/92.3.205. View

3.
Wang S, Summers R . Machine learning and radiology. Med Image Anal. 2012; 16(5):933-51. PMC: 3372692. DOI: 10.1016/j.media.2012.02.005. View

4.
Gillies R, Kinahan P, Hricak H . Radiomics: Images Are More than Pictures, They Are Data. Radiology. 2015; 278(2):563-77. PMC: 4734157. DOI: 10.1148/radiol.2015151169. View

5.
Ozkan E, West A, Dedelow J, Chu B, Zhao W, Yildiz V . CT Gray-Level Texture Analysis as a Quantitative Imaging Biomarker of Epidermal Growth Factor Receptor Mutation Status in Adenocarcinoma of the Lung. AJR Am J Roentgenol. 2015; 205(5):1016-25. DOI: 10.2214/AJR.14.14147. View