» Articles » PMID: 28839151

Evaluation of the Concentration of Point Defects in GaN

Overview
Journal Sci Rep
Specialty Science
Date 2017 Aug 26
PMID 28839151
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Photoluminescence (PL) was used to estimate the concentration of point defects in GaN. The results are compared with data from positron annihilation spectroscopy (PAS), secondary ion mass spectrometry (SIMS), and deep level transient spectroscopy (DLTS). Defect-related PL intensity in undoped GaN grown by hydride vapor phase epitaxy increases linearly with the concentration of related defects only up to 10 cm. At higher concentrations, the PL intensity associated with individual defects tends to saturate, and accordingly, does not directly correlate with the concentration of defects. For this reason, SIMS analysis, with relatively high detection limits, may not be helpful for classifying unidentified point defects in GaN. Additionally, we highlight challenges in correlating defects identified by PL with those by PAS and DLTS methods.

Citing Articles

Atomistic Origins of Various Luminescent Centers and n-Type Conductivity in GaN: Exploring the Point Defects Induced by Cr, Mn, and O through an Thermodynamic Approach.

Czelej K, Mansoor M, Sarsil M, Tas M, Sorkhe Y, Mansoor M Chem Mater. 2024; 36(13):6392-6409.

PMID: 39005534 PMC: 11238542. DOI: 10.1021/acs.chemmater.4c00178.


Highly efficient blue InGaN nanoscale light-emitting diodes.

Sheen M, Ko Y, Kim D, Kim J, Byun J, Choi Y Nature. 2022; 608(7921):56-61.

PMID: 35922503 DOI: 10.1038/s41586-022-04933-5.


Synthesis and photoluminescence properties of hybrid 1D core-shell structured nanocomposites based on ZnO/polydopamine.

Fedorenko V, Viter R, Mrowczynski R, Damberga D, Coy E, Iatsunskyi I RSC Adv. 2022; 10(50):29751-29758.

PMID: 35518237 PMC: 9056168. DOI: 10.1039/d0ra04829a.


Two yellow luminescence bands in undoped GaN.

Reshchikov M, McNamara J, Helava H, Usikov A, Makarov Y Sci Rep. 2018; 8(1):8091.

PMID: 29802310 PMC: 5970192. DOI: 10.1038/s41598-018-26354-z.

References
1.
Puska , Seitsonen , Nieminen . Electron-positron Car-Parrinello methods: Self-consistent treatment of charge densities and ionic relaxations. Phys Rev B Condens Matter. 1995; 52(15):10947-10961. DOI: 10.1103/physrevb.52.10947. View

2.
Kresse , Furthmuller . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter. 1996; 54(16):11169-11186. DOI: 10.1103/physrevb.54.11169. View

3.
Blochl . Projector augmented-wave method. Phys Rev B Condens Matter. 1994; 50(24):17953-17979. DOI: 10.1103/physrevb.50.17953. View

4.
Van de Walle C, Neugebauer J . Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature. 2003; 423(6940):626-8. DOI: 10.1038/nature01665. View

5.
Alatalo , Barbiellini , Hakala , Kauppinen , Korhonen , Puska . Theoretical and experimental study of positron annihilation with core electrons in solids. Phys Rev B Condens Matter. 1996; 54(4):2397-2409. DOI: 10.1103/physrevb.54.2397. View